1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
|
/* SPDX-License-Identifier: MIT
*
* Copyright (C) 2015-2018 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
*
* This is an implementation of the Curve25519 ECDH algorithm, using either
* a 32-bit implementation or a 64-bit implementation with 128-bit integers,
* depending on what is supported by the target compiler.
*
* Information: https://cr.yp.to/ecdh.html
*/
#include <zinc/curve25519.h>
#include <asm/unaligned.h>
#include <linux/version.h>
#include <linux/string.h>
#include <linux/random.h>
#include <linux/module.h>
#include <linux/init.h>
#include <crypto/algapi.h>
#if defined(CONFIG_ZINC_ARCH_X86_64)
#include "curve25519-x86_64-glue.h"
#elif defined(CONFIG_ZINC_ARCH_ARM)
#include "curve25519-arm-glue.h"
#else
void __init curve25519_fpu_init(void)
{
}
static inline bool curve25519_arch(u8 mypublic[CURVE25519_POINT_SIZE],
const u8 secret[CURVE25519_POINT_SIZE],
const u8 basepoint[CURVE25519_POINT_SIZE])
{
return false;
}
static inline bool curve25519_base_arch(u8 pub[CURVE25519_POINT_SIZE],
const u8 secret[CURVE25519_POINT_SIZE])
{
return false;
}
#endif
static __always_inline void normalize_secret(u8 secret[CURVE25519_POINT_SIZE])
{
secret[0] &= 248;
secret[31] &= 127;
secret[31] |= 64;
}
#if defined(CONFIG_ARCH_SUPPORTS_INT128) && defined(__SIZEOF_INT128__)
#include "curve25519-hacl64.h"
#else
#include "curve25519-fiat32.h"
#endif
static const u8 null_point[CURVE25519_POINT_SIZE] = { 0 };
bool curve25519(u8 mypublic[CURVE25519_POINT_SIZE],
const u8 secret[CURVE25519_POINT_SIZE],
const u8 basepoint[CURVE25519_POINT_SIZE])
{
if (!curve25519_arch(mypublic, secret, basepoint))
curve25519_generic(mypublic, secret, basepoint);
return crypto_memneq(mypublic, null_point, CURVE25519_POINT_SIZE);
}
EXPORT_SYMBOL(curve25519);
bool curve25519_generate_public(u8 pub[CURVE25519_POINT_SIZE],
const u8 secret[CURVE25519_POINT_SIZE])
{
static const u8 basepoint[CURVE25519_POINT_SIZE] __aligned(32) = { 9 };
if (unlikely(!crypto_memneq(secret, null_point, CURVE25519_POINT_SIZE)))
return false;
if (curve25519_base_arch(pub, secret))
return crypto_memneq(pub, null_point, CURVE25519_POINT_SIZE);
return curve25519(pub, secret, basepoint);
}
EXPORT_SYMBOL(curve25519_generate_public);
void curve25519_generate_secret(u8 secret[CURVE25519_POINT_SIZE])
{
get_random_bytes_wait(secret, CURVE25519_POINT_SIZE);
normalize_secret(secret);
}
EXPORT_SYMBOL(curve25519_generate_secret);
#include "../selftest/curve25519.h"
#ifndef COMPAT_ZINC_IS_A_MODULE
int __init curve25519_mod_init(void)
#else
static int __init mod_init(void)
#endif
{
curve25519_fpu_init();
#ifdef DEBUG
if (!curve25519_selftest())
return -ENOTRECOVERABLE;
#endif
return 0;
}
#ifdef COMPAT_ZINC_IS_A_MODULE
static void __exit mod_exit(void)
{
}
module_init(mod_init);
module_exit(mod_exit);
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("Curve25519 scalar multiplication");
MODULE_AUTHOR("Jason A. Donenfeld <Jason@zx2c4.com>");
#endif
|