diff options
author | Jason A. Donenfeld <Jason@zx2c4.com> | 2017-10-25 17:56:08 +0200 |
---|---|---|
committer | Jason A. Donenfeld <Jason@zx2c4.com> | 2017-10-31 17:25:23 +0100 |
commit | abddb8492c55482048b10788e00ec20e5ee3948f (patch) | |
tree | c120c38e63eccdea9cac4bd16d03b6d4919a6b9d /src/crypto | |
parent | ce7e110ef3a0809e875b7c8a0008226ecda32518 (diff) |
global: style nits
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Diffstat (limited to 'src/crypto')
-rw-r--r-- | src/crypto/blake2s.c | 28 | ||||
-rw-r--r-- | src/crypto/blake2s.h | 3 | ||||
-rw-r--r-- | src/crypto/chacha20poly1305.c | 17 | ||||
-rw-r--r-- | src/crypto/curve25519.c | 279 |
4 files changed, 198 insertions, 129 deletions
diff --git a/src/crypto/blake2s.c b/src/crypto/blake2s.c index ab37a0c..91f154f 100644 --- a/src/crypto/blake2s.c +++ b/src/crypto/blake2s.c @@ -65,6 +65,7 @@ static inline void blake2s_init_param(struct blake2s_state *state, const blake2s { const __le32 *p; int i; + memset(state, 0, sizeof(struct blake2s_state)); for (i = 0; i < 8; ++i) state->h[i] = blake2s_iv[i]; @@ -112,12 +113,12 @@ void blake2s_init_key(struct blake2s_state *state, const size_t outlen, const vo #include <asm/processor.h> #include <asm/fpu/api.h> #include <asm/simd.h> -static bool blake2s_use_avx __read_mostly = false; +static bool blake2s_use_avx __read_mostly; void __init blake2s_fpu_init(void) { blake2s_use_avx = boot_cpu_has(X86_FEATURE_AVX) && cpu_has_xfeatures(XFEATURE_MASK_SSE | XFEATURE_MASK_YMM, NULL); } -asmlinkage void blake2s_compress_avx(struct blake2s_state *state, const u8 * block, size_t nblocks, u32 inc); +asmlinkage void blake2s_compress_avx(struct blake2s_state *state, const u8 *block, size_t nblocks, u32 inc); #else void __init blake2s_fpu_init(void) { } #endif @@ -160,7 +161,7 @@ static inline void blake2s_compress(struct blake2s_state *state, const u8 *block v[14] = blake2s_iv[6] ^ state->f[0]; v[15] = blake2s_iv[7] ^ state->f[1]; -#define G(r,i,a,b,c,d) do { \ +#define G(r, i, a, b, c, d) do { \ a += b + m[blake2s_sigma[r][2 * i + 0]]; \ d = ror32(d ^ a, 16); \ c += d; \ @@ -169,18 +170,18 @@ static inline void blake2s_compress(struct blake2s_state *state, const u8 *block d = ror32(d ^ a, 8); \ c += d; \ b = ror32(b ^ c, 7); \ -} while(0) +} while (0) #define ROUND(r) do { \ - G(r,0,v[ 0],v[ 4],v[ 8],v[12]); \ - G(r,1,v[ 1],v[ 5],v[ 9],v[13]); \ - G(r,2,v[ 2],v[ 6],v[10],v[14]); \ - G(r,3,v[ 3],v[ 7],v[11],v[15]); \ - G(r,4,v[ 0],v[ 5],v[10],v[15]); \ - G(r,5,v[ 1],v[ 6],v[11],v[12]); \ - G(r,6,v[ 2],v[ 7],v[ 8],v[13]); \ - G(r,7,v[ 3],v[ 4],v[ 9],v[14]); \ -} while(0) + G(r, 0, v[0], v[ 4], v[ 8], v[12]); \ + G(r, 1, v[1], v[ 5], v[ 9], v[13]); \ + G(r, 2, v[2], v[ 6], v[10], v[14]); \ + G(r, 3, v[3], v[ 7], v[11], v[15]); \ + G(r, 4, v[0], v[ 5], v[10], v[15]); \ + G(r, 5, v[1], v[ 6], v[11], v[12]); \ + G(r, 6, v[2], v[ 7], v[ 8], v[13]); \ + G(r, 7, v[3], v[ 4], v[ 9], v[14]); \ +} while (0) ROUND(0); ROUND(1); ROUND(2); @@ -206,6 +207,7 @@ static inline void blake2s_compress(struct blake2s_state *state, const u8 *block void blake2s_update(struct blake2s_state *state, const u8 *in, size_t inlen) { const size_t fill = BLAKE2S_BLOCKBYTES - state->buflen; + if (unlikely(!inlen)) return; if (inlen > fill) { diff --git a/src/crypto/blake2s.h b/src/crypto/blake2s.h index 99de9f9..9ed53ea 100644 --- a/src/crypto/blake2s.h +++ b/src/crypto/blake2s.h @@ -38,10 +38,12 @@ static inline void blake2s_final(struct blake2s_state *state, u8 *out, size_t ou if (__builtin_constant_p(outlen) && !(outlen % sizeof(u32))) { if (IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) || IS_ALIGNED((unsigned long)out, __alignof__(u32))) { __le32 *outwords = (__le32 *)out; + for (i = 0; i < outlen / sizeof(u32); ++i) outwords[i] = cpu_to_le32(state->h[i]); } else { __le32 buffer[BLAKE2S_OUTBYTES]; + for (i = 0; i < outlen / sizeof(u32); ++i) buffer[i] = cpu_to_le32(state->h[i]); memcpy(out, buffer, outlen); @@ -50,6 +52,7 @@ static inline void blake2s_final(struct blake2s_state *state, u8 *out, size_t ou } else { u8 buffer[BLAKE2S_OUTBYTES] __aligned(__alignof__(u32)); __le32 *outwords = (__le32 *)buffer; + for (i = 0; i < 8; ++i) outwords[i] = cpu_to_le32(state->h[i]); memcpy(out, buffer, outlen); diff --git a/src/crypto/chacha20poly1305.c b/src/crypto/chacha20poly1305.c index 3163009..2ce7cbb 100644 --- a/src/crypto/chacha20poly1305.c +++ b/src/crypto/chacha20poly1305.c @@ -28,9 +28,9 @@ asmlinkage void poly1305_asm_2block_sse2(u32 *h, const u8 *src, const u32 *r, un #ifdef CONFIG_AS_AVX2 asmlinkage void poly1305_asm_4block_avx2(u32 *h, const u8 *src, const u32 *r, unsigned int blocks, const u32 *u); #endif -static bool chacha20poly1305_use_avx2 __read_mostly = false; -static bool chacha20poly1305_use_ssse3 __read_mostly = false; -static bool chacha20poly1305_use_sse2 __read_mostly = false; +static bool chacha20poly1305_use_avx2 __read_mostly; +static bool chacha20poly1305_use_ssse3 __read_mostly; +static bool chacha20poly1305_use_sse2 __read_mostly; void chacha20poly1305_fpu_init(void) { chacha20poly1305_use_sse2 = boot_cpu_has(X86_FEATURE_XMM2); @@ -42,7 +42,7 @@ void chacha20poly1305_fpu_init(void) #include <asm/neon.h> asmlinkage void chacha20_asm_block_xor_neon(u32 *state, u8 *dst, const u8 *src); asmlinkage void chacha20_asm_4block_xor_neon(u32 *state, u8 *dst, const u8 *src); -static bool chacha20poly1305_use_neon __read_mostly = false; +static bool chacha20poly1305_use_neon __read_mostly; void __init chacha20poly1305_fpu_init(void) { #if defined(CONFIG_ARM64) @@ -458,7 +458,8 @@ static void poly1305_simd_mult(u32 *a, const u32 *b) memset(m, 0, sizeof(m)); /* The poly1305 block function adds a hi-bit to the accumulator which - * we don't need for key multiplication; compensate for it. */ + * we don't need for key multiplication; compensate for it. + */ a[4] -= 1U << 24; poly1305_asm_block_sse2(a, m, b, 1); } @@ -663,6 +664,7 @@ void chacha20poly1305_encrypt(u8 *dst, const u8 *src, const size_t src_len, const u64 nonce, const u8 key[CHACHA20POLY1305_KEYLEN]) { bool have_simd; + have_simd = chacha20poly1305_init_simd(); __chacha20poly1305_encrypt(dst, src, src_len, ad, ad_len, nonce, key, have_simd); chacha20poly1305_deinit_simd(have_simd); @@ -696,6 +698,7 @@ bool chacha20poly1305_encrypt_sg(struct scatterlist *dst, struct scatterlist *sr ret = blkcipher_walk_virt_block(&chacha20_desc, &walk, CHACHA20_BLOCK_SIZE); while (walk.nbytes >= CHACHA20_BLOCK_SIZE) { size_t chunk_len = rounddown(walk.nbytes, CHACHA20_BLOCK_SIZE); + chacha20_crypt(&chacha20_state, walk.dst.virt.addr, walk.src.virt.addr, chunk_len, have_simd); poly1305_update(&poly1305_state, walk.dst.virt.addr, chunk_len, have_simd); ret = blkcipher_walk_done(&chacha20_desc, &walk, walk.nbytes % CHACHA20_BLOCK_SIZE); @@ -780,6 +783,7 @@ bool chacha20poly1305_decrypt(u8 *dst, const u8 *src, const size_t src_len, const u64 nonce, const u8 key[CHACHA20POLY1305_KEYLEN]) { bool have_simd, ret; + have_simd = chacha20poly1305_init_simd(); ret = __chacha20poly1305_decrypt(dst, src, src_len, ad, ad_len, nonce, key, have_simd); chacha20poly1305_deinit_simd(have_simd); @@ -821,6 +825,7 @@ bool chacha20poly1305_decrypt_sg(struct scatterlist *dst, struct scatterlist *sr ret = blkcipher_walk_virt_block(&chacha20_desc, &walk, CHACHA20_BLOCK_SIZE); while (walk.nbytes >= CHACHA20_BLOCK_SIZE) { size_t chunk_len = rounddown(walk.nbytes, CHACHA20_BLOCK_SIZE); + poly1305_update(&poly1305_state, walk.src.virt.addr, chunk_len, have_simd); chacha20_crypt(&chacha20_state, walk.dst.virt.addr, walk.src.virt.addr, chunk_len, have_simd); ret = blkcipher_walk_done(&chacha20_desc, &walk, walk.nbytes % CHACHA20_BLOCK_SIZE); @@ -863,6 +868,7 @@ void xchacha20poly1305_encrypt(u8 *dst, const u8 *src, const size_t src_len, { bool have_simd = chacha20poly1305_init_simd(); u8 derived_key[CHACHA20POLY1305_KEYLEN] __aligned(16); + hchacha20(derived_key, nonce, key, have_simd); __chacha20poly1305_encrypt(dst, src, src_len, ad, ad_len, le64_to_cpuvp(nonce + 16), derived_key, have_simd); memzero_explicit(derived_key, CHACHA20POLY1305_KEYLEN); @@ -876,6 +882,7 @@ bool xchacha20poly1305_decrypt(u8 *dst, const u8 *src, const size_t src_len, { bool ret, have_simd = chacha20poly1305_init_simd(); u8 derived_key[CHACHA20POLY1305_KEYLEN] __aligned(16); + hchacha20(derived_key, nonce, key, have_simd); ret = __chacha20poly1305_decrypt(dst, src, src_len, ad, ad_len, le64_to_cpuvp(nonce + 16), derived_key, have_simd); memzero_explicit(derived_key, CHACHA20POLY1305_KEYLEN); diff --git a/src/crypto/curve25519.c b/src/crypto/curve25519.c index 892da78..c594a56 100644 --- a/src/crypto/curve25519.c +++ b/src/crypto/curve25519.c @@ -30,7 +30,7 @@ static const u8 null_point[CURVE25519_POINT_SIZE] = { 0 }; #include <asm/processor.h> #include <asm/fpu/api.h> #include <asm/simd.h> -static bool curve25519_use_avx __read_mostly = false; +static bool curve25519_use_avx __read_mostly; void curve25519_fpu_init(void) { curve25519_use_avx = boot_cpu_has(X86_FEATURE_AVX) && cpu_has_xfeatures(XFEATURE_MASK_SSE | XFEATURE_MASK_YMM, NULL); @@ -129,6 +129,7 @@ static void curve25519_sandy2x(u8 mypublic[CURVE25519_POINT_SIZE], const u8 secr u8 e[32]; fe var[3]; fe51 x_51, z_51; + memcpy(e, secret, 32); normalize_secret(e); #define x1 var[0] @@ -164,6 +165,7 @@ static void curve25519_sandy2x_base(u8 pub[CURVE25519_POINT_SIZE], const u8 secr u8 e[32]; fe var[3]; fe51 x_51, z_51; + memcpy(e, secret, 32); normalize_secret(e); curve25519_sandy2x_ladder_base(var, e); @@ -195,7 +197,7 @@ static void curve25519_sandy2x_base(u8 pub[CURVE25519_POINT_SIZE], const u8 secr #include <asm/neon.h> #include <asm/simd.h> asmlinkage void curve25519_asm_neon(u8 mypublic[CURVE25519_POINT_SIZE], const u8 secret[CURVE25519_POINT_SIZE], const u8 basepoint[CURVE25519_POINT_SIZE]); -static bool curve25519_use_neon __read_mostly = false; +static bool curve25519_use_neon __read_mostly; void __init curve25519_fpu_init(void) { curve25519_use_neon = elf_hwcap & HWCAP_NEON; @@ -272,7 +274,7 @@ static __always_inline void fscalar_product(felem output, const felem in, const static __always_inline void fmul(felem output, const felem in2, const felem in) { u128 t[5]; - limb r0,r1,r2,r3,r4,s0,s1,s2,s3,s4,c; + limb r0, r1, r2, r3, r4, s0, s1, s2, s3, s4, c; r0 = in[0]; r1 = in[1]; @@ -321,8 +323,8 @@ static __always_inline void fmul(felem output, const felem in2, const felem in) static __always_inline void fsquare_times(felem output, const felem in, limb count) { u128 t[5]; - limb r0,r1,r2,r3,r4,c; - limb d0,d1,d2,d4,d419; + limb r0, r1, r2, r3, r4, c; + limb d0, d1, d2, d4, d419; r0 = in[0]; r1 = in[1]; @@ -351,7 +353,7 @@ static __always_inline void fsquare_times(felem output, const felem in, limb cou r0 += c * 19; c = r0 >> 51; r0 = r0 & 0x7ffffffffffffUL; r1 += c; c = r1 >> 51; r1 = r1 & 0x7ffffffffffffUL; r2 += c; - } while(--count); + } while (--count); output[0] = r0; output[1] = r1; @@ -452,6 +454,7 @@ static void fmonty(limb *x2, limb *z2, /* output 2Q */ limb *x3, limb *z3, /* output Q + Q' */ limb *x, limb *z, /* input Q */ limb *xprime, limb *zprime, /* input Q' */ + const limb *qmqp /* input Q - Q' */) { limb origx[5], origxprime[5], zzz[5], xx[5], zz[5], xxprime[5], zzprime[5], zzzprime[5]; @@ -489,11 +492,12 @@ static void fmonty(limb *x2, limb *z2, /* output 2Q */ */ static void swap_conditional(limb a[5], limb b[5], limb iswap) { - unsigned i; + unsigned int i; const limb swap = -iswap; for (i = 0; i < 5; ++i) { const limb x = swap & (a[i] ^ b[i]); + a[i] ^= x; b[i] ^= x; } @@ -512,12 +516,13 @@ static void cmult(limb *resultx, limb *resultz, const u8 *n, const limb *q) limb e[5] = {0}, f[5] = {1}, g[5] = {0}, h[5] = {1}; limb *nqpqx2 = e, *nqpqz2 = f, *nqx2 = g, *nqz2 = h; - unsigned i, j; + unsigned int i, j; memcpy(nqpqx, q, sizeof(limb) * 5); for (i = 0; i < 32; ++i) { u8 byte = n[31 - i]; + for (j = 0; j < 8; ++j) { const limb bit = byte >> 7; @@ -554,7 +559,7 @@ static void cmult(limb *resultx, limb *resultz, const u8 *n, const limb *q) static void crecip(felem out, const felem z) { - felem a,t0,b,c; + felem a, t0, b, c; /* 2 */ fsquare_times(a, z, 1); // a = 2 /* 8 */ fsquare_times(t0, a, 2); @@ -633,12 +638,14 @@ typedef s64 limb; * significant first. The value of the field element is: * x[0] + 2^26·x[1] + x^51·x[2] + 2^102·x[3] + ... * - * i.e. the limbs are 26, 25, 26, 25, ... bits wide. */ + * i.e. the limbs are 26, 25, 26, 25, ... bits wide. + */ /* Sum two numbers: output += in */ static void fsum(limb *output, const limb *in) { - unsigned i; + unsigned int i; + for (i = 0; i < 10; i += 2) { output[0 + i] = output[0 + i] + in[0 + i]; output[1 + i] = output[1 + i] + in[1 + i]; @@ -646,10 +653,12 @@ static void fsum(limb *output, const limb *in) } /* Find the difference of two numbers: output = in - output - * (note the order of the arguments!). */ + * (note the order of the arguments!). + */ static void fdifference(limb *output, const limb *in) { - unsigned i; + unsigned int i; + for (i = 0; i < 10; ++i) output[i] = in[i] - output[i]; } @@ -657,7 +666,8 @@ static void fdifference(limb *output, const limb *in) /* Multiply a number by a scalar: output = in * scalar */ static void fscalar_product(limb *output, const limb *in, const limb scalar) { - unsigned i; + unsigned int i; + for (i = 0; i < 10; ++i) output[i] = in[i] * scalar; } @@ -667,7 +677,8 @@ static void fscalar_product(limb *output, const limb *in, const limb scalar) * output must be distinct to both inputs. The inputs are reduced coefficient * form, the output is not. * - * output[x] <= 14 * the largest product of the input limbs. */ + * output[x] <= 14 * the largest product of the input limbs. + */ static void fproduct(limb *output, const limb *in2, const limb *in) { output[0] = ((limb) ((s32) in2[0])) * ((s32) in[0]); @@ -775,13 +786,15 @@ static void fproduct(limb *output, const limb *in2, const limb *in) /* Reduce a long form to a short form by taking the input mod 2^255 - 19. * * On entry: |output[i]| < 14*2^54 - * On exit: |output[0..8]| < 280*2^54 */ + * On exit: |output[0..8]| < 280*2^54 + */ static void freduce_degree(limb *output) { /* Each of these shifts and adds ends up multiplying the value by 19. * * For output[0..8], the absolute entry value is < 14*2^54 and we add, at - * most, 19*14*2^54 thus, on exit, |output[0..8]| < 280*2^54. */ + * most, 19*14*2^54 thus, on exit, |output[0..8]| < 280*2^54. + */ output[8] += output[18] << 4; output[8] += output[18] << 1; output[8] += output[18]; @@ -817,7 +830,8 @@ static void freduce_degree(limb *output) /* return v / 2^26, using only shifts and adds. * - * On entry: v can take any value. */ + * On entry: v can take any value. + */ static inline limb div_by_2_26(const limb v) { /* High word of v; no shift needed. */ @@ -832,7 +846,8 @@ static inline limb div_by_2_26(const limb v) /* return v / (2^25), using only shifts and adds. * - * On entry: v can take any value. */ + * On entry: v can take any value. + */ static inline limb div_by_2_25(const limb v) { /* High word of v; no shift needed*/ @@ -847,10 +862,11 @@ static inline limb div_by_2_25(const limb v) /* Reduce all coefficients of the short form input so that |x| < 2^26. * - * On entry: |output[i]| < 280*2^54 */ + * On entry: |output[i]| < 280*2^54 + */ static void freduce_coefficients(limb *output) { - unsigned i; + unsigned int i; output[10] = 0; @@ -859,7 +875,8 @@ static void freduce_coefficients(limb *output) /* The entry condition (that |output[i]| < 280*2^54) means that over is, at * most, 280*2^28 in the first iteration of this loop. This is added to the * next limb and we can approximate the resulting bound of that limb by - * 281*2^54. */ + * 281*2^54. + */ output[i] -= over << 26; output[i+1] += over; @@ -868,7 +885,8 @@ static void freduce_coefficients(limb *output) * be approximated as 281*2^54. * * For subsequent iterations of the loop, 281*2^54 remains a conservative - * bound and no overflow occurs. */ + * bound and no overflow occurs. + */ over = div_by_2_25(output[i+1]); output[i+1] -= over << 25; output[i+2] += over; @@ -881,15 +899,18 @@ static void freduce_coefficients(limb *output) output[10] = 0; /* Now output[1..9] are reduced, and |output[0]| < 2^26 + 19*281*2^29 - * So |over| will be no more than 2^16. */ + * So |over| will be no more than 2^16. + */ { limb over = div_by_2_26(output[0]); + output[0] -= over << 26; output[1] += over; } /* Now output[0,2..9] are reduced, and |output[1]| < 2^25 + 2^16 < 2^26. The - * bound on |output[1]| is sufficient to meet our needs. */ + * bound on |output[1]| is sufficient to meet our needs. + */ } /* A helpful wrapper around fproduct: output = in * in2. @@ -897,10 +918,12 @@ static void freduce_coefficients(limb *output) * On entry: |in[i]| < 2^27 and |in2[i]| < 2^27. * * output must be distinct to both inputs. The output is reduced degree - * (indeed, one need only provide storage for 10 limbs) and |output[i]| < 2^26. */ + * (indeed, one need only provide storage for 10 limbs) and |output[i]| < 2^26. + */ static void fmul(limb *output, const limb *in, const limb *in2) { limb t[19]; + fproduct(t, in, in2); /* |t[i]| < 14*2^54 */ freduce_degree(t); @@ -914,7 +937,8 @@ static void fmul(limb *output, const limb *in, const limb *in2) * output must be distinct from the input. The inputs are reduced coefficient * form, the output is not. * - * output[x] <= 14 * the largest product of the input limbs. */ + * output[x] <= 14 * the largest product of the input limbs. + */ static void fsquare_inner(limb *output, const limb *in) { output[0] = ((limb) ((s32) in[0])) * ((s32) in[0]); @@ -980,14 +1004,17 @@ static void fsquare_inner(limb *output, const limb *in) * 2^27. * * On exit: The |output| argument is in reduced coefficients form (indeed, one - * need only provide storage for 10 limbs) and |out[i]| < 2^26. */ + * need only provide storage for 10 limbs) and |out[i]| < 2^26. + */ static void fsquare(limb *output, const limb *in) { limb t[19]; + fsquare_inner(t, in); /* |t[i]| < 14*2^54 because the largest product of two limbs will be < * 2^(27+27) and fsquare_inner adds together, at most, 14 of those - * products. */ + * products. + */ freduce_degree(t); freduce_coefficients(t); /* |t[i]| < 2^26 */ @@ -997,7 +1024,7 @@ static void fsquare(limb *output, const limb *in) /* Take a little-endian, 32-byte number and expand it into polynomial form */ static inline void fexpand(limb *output, const u8 *input) { -#define F(n,start,shift,mask) \ +#define F(n, start, shift, mask) \ output[n] = ((((limb) input[start + 0]) | \ ((limb) input[start + 1]) << 8 | \ ((limb) input[start + 2]) << 16 | \ @@ -1032,7 +1059,8 @@ static s32 s32_eq(s32 a, s32 b) } /* s32_gte returns 0xffffffff if a >= b and zero otherwise, where a and b are - * both non-negative. */ + * both non-negative. + */ static s32 s32_gte(s32 a, s32 b) { a -= b; @@ -1043,7 +1071,8 @@ static s32 s32_gte(s32 a, s32 b) /* Take a fully reduced polynomial form number and contract it into a * little-endian, 32-byte array. * - * On entry: |input_limbs[i]| < 2^26 */ + * On entry: |input_limbs[i]| < 2^26 + */ static void fcontract(u8 *output, limb *input_limbs) { int i; @@ -1060,31 +1089,37 @@ static void fcontract(u8 *output, limb *input_limbs) for (i = 0; i < 9; ++i) { if ((i & 1) == 1) { /* This calculation is a time-invariant way to make input[i] - * non-negative by borrowing from the next-larger limb. */ + * non-negative by borrowing from the next-larger limb. + */ const s32 mask = input[i] >> 31; const s32 carry = -((input[i] & mask) >> 25); + input[i] = input[i] + (carry << 25); input[i+1] = input[i+1] - carry; } else { const s32 mask = input[i] >> 31; const s32 carry = -((input[i] & mask) >> 26); + input[i] = input[i] + (carry << 26); input[i+1] = input[i+1] - carry; } } /* There's no greater limb for input[9] to borrow from, but we can multiply - * by 19 and borrow from input[0], which is valid mod 2^255-19. */ + * by 19 and borrow from input[0], which is valid mod 2^255-19. + */ { const s32 mask = input[9] >> 31; const s32 carry = -((input[9] & mask) >> 25); + input[9] = input[9] + (carry << 25); input[0] = input[0] - (carry * 19); } /* After the first iteration, input[1..9] are non-negative and fit within * 25 or 26 bits, depending on position. However, input[0] may be - * negative. */ + * negative. + */ } /* The first borrow-propagation pass above ended with every limb @@ -1100,20 +1135,24 @@ static void fcontract(u8 *output, limb *input_limbs) { const s32 mask = input[0] >> 31; const s32 carry = -((input[0] & mask) >> 26); + input[0] = input[0] + (carry << 26); input[1] = input[1] - carry; } /* All input[i] are now non-negative. However, there might be values between - * 2^25 and 2^26 in a limb which is, nominally, 25 bits wide. */ + * 2^25 and 2^26 in a limb which is, nominally, 25 bits wide. + */ for (j = 0; j < 2; j++) { for (i = 0; i < 9; i++) { if ((i & 1) == 1) { const s32 carry = input[i] >> 25; + input[i] &= 0x1ffffff; input[i+1] += carry; } else { const s32 carry = input[i] >> 26; + input[i] &= 0x3ffffff; input[i+1] += carry; } @@ -1121,6 +1160,7 @@ static void fcontract(u8 *output, limb *input_limbs) { const s32 carry = input[9] >> 25; + input[9] &= 0x1ffffff; input[0] += 19*carry; } @@ -1131,11 +1171,13 @@ static void fcontract(u8 *output, limb *input_limbs) * < 2^26 + 2*19, because the carry was, at most, two. * * If the second pass carried from input[9] again then input[0] is < 2*19 and - * the input[9] -> input[0] carry didn't push input[0] out of bounds. */ + * the input[9] -> input[0] carry didn't push input[0] out of bounds. + */ /* It still remains the case that input might be between 2^255-19 and 2^255. * In this case, input[1..9] must take their maximum value and input[0] must - * be >= (2^255-19) & 0x3ffffff, which is 0x3ffffed. */ + * be >= (2^255-19) & 0x3ffffff, which is 0x3ffffed. + */ mask = s32_gte(input[0], 0x3ffffed); for (i = 1; i < 10; i++) { if ((i & 1) == 1) { @@ -1146,7 +1188,8 @@ static void fcontract(u8 *output, limb *input_limbs) } /* mask is either 0xffffffff (if input >= 2^255-19) and zero otherwise. Thus - * this conditionally subtracts 2^255-19. */ + * this conditionally subtracts 2^255-19. + */ input[0] -= mask & 0x3ffffed; for (i = 1; i < 10; i++) { @@ -1172,16 +1215,16 @@ static void fcontract(u8 *output, limb *input_limbs) output[s+3] = (input[i] >> 24) & 0xff; output[0] = 0; output[16] = 0; - F(0,0); - F(1,3); - F(2,6); - F(3,9); - F(4,12); - F(5,16); - F(6,19); - F(7,22); - F(8,25); - F(9,28); + F(0, 0); + F(1, 3); + F(2, 6); + F(3, 9); + F(4, 12); + F(5, 16); + F(6, 19); + F(7, 22); + F(8, 25); + F(9, 28); #undef F } @@ -1193,14 +1236,16 @@ static void fcontract(u8 *output, limb *input_limbs) * wrong results. Also, the two limb arrays must be in reduced-coefficient, * reduced-degree form: the values in a[10..19] or b[10..19] aren't swapped, * and all all values in a[0..9],b[0..9] must have magnitude less than - * INT32_MAX. */ + * INT32_MAX. + */ static void swap_conditional(limb a[19], limb b[19], limb iswap) { - unsigned i; + unsigned int i; const s32 swap = (s32) -iswap; for (i = 0; i < 10; ++i) { - const s32 x = swap & ( ((s32)a[i]) ^ ((s32)b[i]) ); + const s32 x = swap & (((s32)a[i]) ^ ((s32)b[i])); + a[i] = ((s32)a[i]) ^ x; b[i] = ((s32)b[i]) ^ x; } @@ -1220,57 +1265,57 @@ static void crecip(limb *out, const limb *z) limb t1[10]; int i; - /* 2 */ fsquare(z2,z); - /* 4 */ fsquare(t1,z2); - /* 8 */ fsquare(t0,t1); - /* 9 */ fmul(z9,t0,z); - /* 11 */ fmul(z11,z9,z2); - /* 22 */ fsquare(t0,z11); - /* 2^5 - 2^0 = 31 */ fmul(z2_5_0,t0,z9); - - /* 2^6 - 2^1 */ fsquare(t0,z2_5_0); - /* 2^7 - 2^2 */ fsquare(t1,t0); - /* 2^8 - 2^3 */ fsquare(t0,t1); - /* 2^9 - 2^4 */ fsquare(t1,t0); - /* 2^10 - 2^5 */ fsquare(t0,t1); - /* 2^10 - 2^0 */ fmul(z2_10_0,t0,z2_5_0); - - /* 2^11 - 2^1 */ fsquare(t0,z2_10_0); - /* 2^12 - 2^2 */ fsquare(t1,t0); - /* 2^20 - 2^10 */ for (i = 2; i < 10; i += 2) { fsquare(t0,t1); fsquare(t1,t0); } - /* 2^20 - 2^0 */ fmul(z2_20_0,t1,z2_10_0); - - /* 2^21 - 2^1 */ fsquare(t0,z2_20_0); - /* 2^22 - 2^2 */ fsquare(t1,t0); - /* 2^40 - 2^20 */ for (i = 2; i < 20; i += 2) { fsquare(t0,t1); fsquare(t1,t0); } - /* 2^40 - 2^0 */ fmul(t0,t1,z2_20_0); - - /* 2^41 - 2^1 */ fsquare(t1,t0); - /* 2^42 - 2^2 */ fsquare(t0,t1); - /* 2^50 - 2^10 */ for (i = 2; i < 10; i += 2) { fsquare(t1,t0); fsquare(t0,t1); } - /* 2^50 - 2^0 */ fmul(z2_50_0,t0,z2_10_0); - - /* 2^51 - 2^1 */ fsquare(t0,z2_50_0); - /* 2^52 - 2^2 */ fsquare(t1,t0); - /* 2^100 - 2^50 */ for (i = 2; i < 50; i += 2) { fsquare(t0,t1); fsquare(t1,t0); } - /* 2^100 - 2^0 */ fmul(z2_100_0,t1,z2_50_0); - - /* 2^101 - 2^1 */ fsquare(t1,z2_100_0); - /* 2^102 - 2^2 */ fsquare(t0,t1); - /* 2^200 - 2^100 */ for (i = 2; i < 100; i += 2) { fsquare(t1,t0); fsquare(t0,t1); } - /* 2^200 - 2^0 */ fmul(t1,t0,z2_100_0); - - /* 2^201 - 2^1 */ fsquare(t0,t1); - /* 2^202 - 2^2 */ fsquare(t1,t0); - /* 2^250 - 2^50 */ for (i = 2; i < 50; i += 2) { fsquare(t0,t1); fsquare(t1,t0); } - /* 2^250 - 2^0 */ fmul(t0,t1,z2_50_0); - - /* 2^251 - 2^1 */ fsquare(t1,t0); - /* 2^252 - 2^2 */ fsquare(t0,t1); - /* 2^253 - 2^3 */ fsquare(t1,t0); - /* 2^254 - 2^4 */ fsquare(t0,t1); - /* 2^255 - 2^5 */ fsquare(t1,t0); - /* 2^255 - 21 */ fmul(out,t1,z11); + /* 2 */ fsquare(z2, z); + /* 4 */ fsquare(t1, z2); + /* 8 */ fsquare(t0, t1); + /* 9 */ fmul(z9, t0, z); + /* 11 */ fmul(z11, z9, z2); + /* 22 */ fsquare(t0, z11); + /* 2^5 - 2^0 = 31 */ fmul(z2_5_0, t0, z9); + + /* 2^6 - 2^1 */ fsquare(t0, z2_5_0); + /* 2^7 - 2^2 */ fsquare(t1, t0); + /* 2^8 - 2^3 */ fsquare(t0, t1); + /* 2^9 - 2^4 */ fsquare(t1, t0); + /* 2^10 - 2^5 */ fsquare(t0, t1); + /* 2^10 - 2^0 */ fmul(z2_10_0, t0, z2_5_0); + + /* 2^11 - 2^1 */ fsquare(t0, z2_10_0); + /* 2^12 - 2^2 */ fsquare(t1, t0); + /* 2^20 - 2^10 */ for (i = 2; i < 10; i += 2) { fsquare(t0, t1); fsquare(t1, t0); } + /* 2^20 - 2^0 */ fmul(z2_20_0, t1, z2_10_0); + + /* 2^21 - 2^1 */ fsquare(t0, z2_20_0); + /* 2^22 - 2^2 */ fsquare(t1, t0); + /* 2^40 - 2^20 */ for (i = 2; i < 20; i += 2) { fsquare(t0, t1); fsquare(t1, t0); } + /* 2^40 - 2^0 */ fmul(t0, t1, z2_20_0); + + /* 2^41 - 2^1 */ fsquare(t1, t0); + /* 2^42 - 2^2 */ fsquare(t0, t1); + /* 2^50 - 2^10 */ for (i = 2; i < 10; i += 2) { fsquare(t1, t0); fsquare(t0, t1); } + /* 2^50 - 2^0 */ fmul(z2_50_0, t0, z2_10_0); + + /* 2^51 - 2^1 */ fsquare(t0, z2_50_0); + /* 2^52 - 2^2 */ fsquare(t1, t0); + /* 2^100 - 2^50 */ for (i = 2; i < 50; i += 2) { fsquare(t0, t1); fsquare(t1, t0); } + /* 2^100 - 2^0 */ fmul(z2_100_0, t1, z2_50_0); + + /* 2^101 - 2^1 */ fsquare(t1, z2_100_0); + /* 2^102 - 2^2 */ fsquare(t0, t1); + /* 2^200 - 2^100 */ for (i = 2; i < 100; i += 2) { fsquare(t1, t0); fsquare(t0, t1); } + /* 2^200 - 2^0 */ fmul(t1, t0, z2_100_0); + + /* 2^201 - 2^1 */ fsquare(t0, t1); + /* 2^202 - 2^2 */ fsquare(t1, t0); + /* 2^250 - 2^50 */ for (i = 2; i < 50; i += 2) { fsquare(t0, t1); fsquare(t1, t0); } + /* 2^250 - 2^0 */ fmul(t0, t1, z2_50_0); + + /* 2^251 - 2^1 */ fsquare(t1, t0); + /* 2^252 - 2^2 */ fsquare(t0, t1); + /* 2^253 - 2^3 */ fsquare(t1, t0); + /* 2^254 - 2^4 */ fsquare(t0, t1); + /* 2^255 - 2^5 */ fsquare(t1, t0); + /* 2^255 - 21 */ fmul(out, t1, z11); } @@ -1285,11 +1330,13 @@ static void crecip(limb *out, const limb *z) * qmqp: short form, preserved * * On entry and exit, the absolute value of the limbs of all inputs and outputs - * are < 2^26. */ + * are < 2^26. + */ static void fmonty(limb *x2, limb *z2, /* output 2Q */ limb *x3, limb *z3, /* output Q + Q' */ limb *x, limb *z, /* input Q */ limb *xprime, limb *zprime, /* input Q' */ + const limb *qmqp /* input Q - Q' */) { limb origx[10], origxprime[10], zzz[19], xx[19], zz[19], xxprime[19], @@ -1309,7 +1356,8 @@ static void fmonty(limb *x2, limb *z2, /* output 2Q */ fproduct(xxprime, xprime, z); /* |xxprime[i]| < 14*2^54: the largest product of two limbs will be < * 2^(27+27) and fproduct adds together, at most, 14 of those products. - * (Approximating that to 2^58 doesn't work out.) */ + * (Approximating that to 2^58 doesn't work out.) + */ fproduct(zzprime, x, zprime); /* |zzprime[i]| < 14*2^54 */ freduce_degree(xxprime); @@ -1366,7 +1414,8 @@ static void fmonty(limb *x2, limb *z2, /* output 2Q */ * * resultx/resultz: the x coordinate of the resulting curve point (short form) * n: a little endian, 32-byte number - * q: a point of the curve (short form) */ + * q: a point of the curve (short form) + */ static void cmult(limb *resultx, limb *resultz, const u8 *n, const limb *q) { limb a[19] = {0}, b[19] = {1}, c[19] = {1}, d[19] = {0}; @@ -1374,12 +1423,13 @@ static void cmult(limb *resultx, limb *resultz, const u8 *n, const limb *q) limb e[19] = {0}, f[19] = {1}, g[19] = {0}, h[19] = {1}; limb *nqpqx2 = e, *nqpqz2 = f, *nqx2 = g, *nqz2 = h; - unsigned i, j; + unsigned int i, j; memcpy(nqpqx, q, sizeof(limb) * 10); for (i = 0; i < 32; ++i) { u8 byte = n[31 - i]; + for (j = 0; j < 8; ++j) { const limb bit = byte >> 7; @@ -1462,12 +1512,14 @@ struct other_stack { * qmqp: short form, preserved * * On entry and exit, the absolute value of the limbs of all inputs and outputs - * are < 2^26. */ + * are < 2^26. + */ static void fmonty(struct other_stack *s, limb *x2, limb *z2, /* output 2Q */ limb *x3, limb *z3, /* output Q + Q' */ limb *x, limb *z, /* input Q */ limb *xprime, limb *zprime, /* input Q' */ + const limb *qmqp /* input Q - Q' */) { memcpy(s->origx, x, 10 * sizeof(limb)); @@ -1484,7 +1536,8 @@ static void fmonty(struct other_stack *s, fproduct(s->xxprime, xprime, z); /* |s->xxprime[i]| < 14*2^54: the largest product of two limbs will be < * 2^(27+27) and fproduct adds together, at most, 14 of those products. - * (Approximating that to 2^58 doesn't work out.) */ + * (Approximating that to 2^58 doesn't work out.) + */ fproduct(s->zzprime, x, zprime); /* |s->zzprime[i]| < 14*2^54 */ freduce_degree(s->xxprime); @@ -1541,10 +1594,11 @@ static void fmonty(struct other_stack *s, * * resultx/resultz: the x coordinate of the resulting curve point (short form) * n: a little endian, 32-byte number - * q: a point of the curve (short form) */ + * q: a point of the curve (short form) + */ static void cmult(struct other_stack *s, limb *resultx, limb *resultz, const u8 *n, const limb *q) { - unsigned i, j; + unsigned int i, j; limb *nqpqx = s->a, *nqpqz = s->b, *nqx = s->c, *nqz = s->d, *t; limb *nqpqx2 = s->e, *nqpqz2 = s->f, *nqx2 = s->g, *nqz2 = s->h; @@ -1553,6 +1607,7 @@ static void cmult(struct other_stack *s, limb *resultx, limb *resultz, const u8 for (i = 0; i < 32; ++i) { u8 byte = n[31 - i]; + for (j = 0; j < 8; ++j) { const limb bit = byte >> 7; @@ -1599,6 +1654,7 @@ bool curve25519(u8 mypublic[CURVE25519_POINT_SIZE], const u8 secret[CURVE25519_P #endif { struct other_stack *s = kzalloc(sizeof(struct other_stack), GFP_KERNEL); + if (unlikely(!s)) return false; @@ -1619,6 +1675,7 @@ bool curve25519(u8 mypublic[CURVE25519_POINT_SIZE], const u8 secret[CURVE25519_P bool curve25519_generate_public(u8 pub[CURVE25519_POINT_SIZE], const u8 secret[CURVE25519_POINT_SIZE]) { static const u8 basepoint[CURVE25519_POINT_SIZE] __aligned(32) = { 9 }; + return curve25519(pub, secret, basepoint); } #endif |