1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
|
package main
import (
"net"
"runtime"
"sync"
)
type Device struct {
mtu int
log *Logger // collection of loggers for levels
idCounter uint // for assigning debug ids to peers
fwMark uint32
net struct {
// seperate for performance reasons
mutex sync.RWMutex
addr *net.UDPAddr // UDP source address
conn *net.UDPConn // UDP "connection"
}
mutex sync.RWMutex
privateKey NoisePrivateKey
publicKey NoisePublicKey
routingTable RoutingTable
indices IndexTable
queue struct {
encryption chan *QueueOutboundElement
decryption chan *QueueInboundElement
handshake chan QueueHandshakeElement
inbound chan []byte // inbound queue for TUN
}
signal struct {
stop chan struct{}
}
peers map[NoisePublicKey]*Peer
mac MACStateDevice
}
func (device *Device) SetPrivateKey(sk NoisePrivateKey) {
device.mutex.Lock()
defer device.mutex.Unlock()
// update key material
device.privateKey = sk
device.publicKey = sk.publicKey()
device.mac.Init(device.publicKey)
// do DH precomputations
for _, peer := range device.peers {
h := &peer.handshake
h.mutex.Lock()
h.precomputedStaticStatic = device.privateKey.sharedSecret(h.remoteStatic)
h.mutex.Unlock()
}
}
func NewDevice(tun TUNDevice, logLevel int) *Device {
device := new(Device)
device.mutex.Lock()
defer device.mutex.Unlock()
device.log = NewLogger(logLevel)
device.mtu = tun.MTU()
device.peers = make(map[NoisePublicKey]*Peer)
device.indices.Init()
device.routingTable.Reset()
// listen
device.net.mutex.Lock()
device.net.conn, _ = net.ListenUDP("udp", device.net.addr)
addr := device.net.conn.LocalAddr()
device.net.addr, _ = net.ResolveUDPAddr(addr.Network(), addr.String())
device.net.mutex.Unlock()
// create queues
device.queue.encryption = make(chan *QueueOutboundElement, QueueOutboundSize)
device.queue.handshake = make(chan QueueHandshakeElement, QueueHandshakeSize)
device.queue.decryption = make(chan *QueueInboundElement, QueueInboundSize)
device.queue.inbound = make(chan []byte, QueueInboundSize)
// prepare signals
device.signal.stop = make(chan struct{})
// start workers
for i := 0; i < runtime.NumCPU(); i += 1 {
go device.RoutineEncryption()
go device.RoutineDecryption()
go device.RoutineHandshake()
}
go device.RoutineReadFromTUN(tun)
go device.RoutineReceiveIncomming()
go device.RoutineWriteToTUN(tun)
return device
}
func (device *Device) LookupPeer(pk NoisePublicKey) *Peer {
device.mutex.RLock()
defer device.mutex.RUnlock()
return device.peers[pk]
}
func (device *Device) RemovePeer(key NoisePublicKey) {
device.mutex.Lock()
defer device.mutex.Unlock()
peer, ok := device.peers[key]
if !ok {
return
}
peer.mutex.Lock()
device.routingTable.RemovePeer(peer)
delete(device.peers, key)
peer.Close()
}
func (device *Device) RemoveAllPeers() {
device.mutex.Lock()
defer device.mutex.Unlock()
for key, peer := range device.peers {
peer.mutex.Lock()
delete(device.peers, key)
peer.Close()
peer.mutex.Unlock()
}
}
func (device *Device) Close() {
device.RemoveAllPeers()
close(device.signal.stop)
close(device.queue.encryption)
}
|