summaryrefslogtreecommitdiffhomepage
path: root/receive.go
blob: fbaf77d5c1211a85db790f94aa7aad46ed2b0066 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
package main

import (
	"bytes"
	"encoding/binary"
	"golang.org/x/crypto/chacha20poly1305"
	"golang.org/x/net/ipv4"
	"golang.org/x/net/ipv6"
	"net"
	"sync"
	"sync/atomic"
	"time"
)

type QueueHandshakeElement struct {
	msgType  uint32
	packet   []byte
	endpoint Endpoint
	buffer   *[MaxMessageSize]byte
}

type QueueInboundElement struct {
	dropped  int32
	mutex    sync.Mutex
	buffer   *[MaxMessageSize]byte
	packet   []byte
	counter  uint64
	keyPair  *KeyPair
	endpoint Endpoint
}

func (elem *QueueInboundElement) Drop() {
	atomic.StoreInt32(&elem.dropped, AtomicTrue)
}

func (elem *QueueInboundElement) IsDropped() bool {
	return atomic.LoadInt32(&elem.dropped) == AtomicTrue
}

func (device *Device) addToInboundQueue(
	queue chan *QueueInboundElement,
	element *QueueInboundElement,
) {
	for {
		select {
		case queue <- element:
			return
		default:
			select {
			case old := <-queue:
				old.Drop()
			default:
			}
		}
	}
}

func (device *Device) addToDecryptionQueue(
	queue chan *QueueInboundElement,
	element *QueueInboundElement,
) {
	for {
		select {
		case queue <- element:
			return
		default:
			select {
			case old := <-queue:
				// drop & release to potential consumer
				old.Drop()
				old.mutex.Unlock()
			default:
			}
		}
	}
}

func (device *Device) addToHandshakeQueue(
	queue chan QueueHandshakeElement,
	element QueueHandshakeElement,
) {
	for {
		select {
		case queue <- element:
			return
		default:
			select {
			case elem := <-queue:
				device.PutMessageBuffer(elem.buffer)
			default:
			}
		}
	}
}

/* Receives incoming datagrams for the device
 *
 * Every time the bind is updated a new routine is started for
 * IPv4 and IPv6 (separately)
 */
func (device *Device) RoutineReceiveIncoming(IP int, bind Bind) {

	logDebug := device.log.Debug
	logDebug.Println("Routine, receive incoming, IP version:", IP)

	// receive datagrams until conn is closed

	buffer := device.GetMessageBuffer()

	var (
		err      error
		size     int
		endpoint Endpoint
	)

	for {

		// read next datagram

		switch IP {
		case ipv4.Version:
			size, endpoint, err = bind.ReceiveIPv4(buffer[:])
		case ipv6.Version:
			size, endpoint, err = bind.ReceiveIPv6(buffer[:])
		default:
			panic("invalid IP version")
		}

		if err != nil {
			return
		}

		if size < MinMessageSize {
			continue
		}

		// check size of packet

		packet := buffer[:size]
		msgType := binary.LittleEndian.Uint32(packet[:4])

		var okay bool

		switch msgType {

		// check if transport

		case MessageTransportType:

			// check size

			if len(packet) < MessageTransportType {
				continue
			}

			// lookup key pair

			receiver := binary.LittleEndian.Uint32(
				packet[MessageTransportOffsetReceiver:MessageTransportOffsetCounter],
			)
			value := device.indices.Lookup(receiver)
			keyPair := value.keyPair
			if keyPair == nil {
				continue
			}

			// check key-pair expiry

			if keyPair.created.Add(RejectAfterTime).Before(time.Now()) {
				continue
			}

			// create work element

			peer := value.peer
			elem := &QueueInboundElement{
				packet:   packet,
				buffer:   buffer,
				keyPair:  keyPair,
				dropped:  AtomicFalse,
				endpoint: endpoint,
			}
			elem.mutex.Lock()

			// add to decryption queues

			if peer.isRunning.Get() {
				device.addToDecryptionQueue(device.queue.decryption, elem)
				device.addToInboundQueue(peer.queue.inbound, elem)
				buffer = device.GetMessageBuffer()
			}

			continue

		// otherwise it is a fixed size & handshake related packet

		case MessageInitiationType:
			okay = len(packet) == MessageInitiationSize

		case MessageResponseType:
			okay = len(packet) == MessageResponseSize

		case MessageCookieReplyType:
			okay = len(packet) == MessageCookieReplySize
		}

		if okay {
			device.addToHandshakeQueue(
				device.queue.handshake,
				QueueHandshakeElement{
					msgType:  msgType,
					buffer:   buffer,
					packet:   packet,
					endpoint: endpoint,
				},
			)
			buffer = device.GetMessageBuffer()
		}
	}
}

func (device *Device) RoutineDecryption() {

	var nonce [chacha20poly1305.NonceSize]byte

	logDebug := device.log.Debug
	logDebug.Println("Routine, decryption, started for device")

	for {
		select {
		case <-device.signal.stop.Wait():
			logDebug.Println("Routine, decryption worker, stopped")
			return

		case elem := <-device.queue.decryption:

			// check if dropped

			if elem.IsDropped() {
				continue
			}

			// split message into fields

			counter := elem.packet[MessageTransportOffsetCounter:MessageTransportOffsetContent]
			content := elem.packet[MessageTransportOffsetContent:]

			// expand nonce

			nonce[0x4] = counter[0x0]
			nonce[0x5] = counter[0x1]
			nonce[0x6] = counter[0x2]
			nonce[0x7] = counter[0x3]

			nonce[0x8] = counter[0x4]
			nonce[0x9] = counter[0x5]
			nonce[0xa] = counter[0x6]
			nonce[0xb] = counter[0x7]

			// decrypt and release to consumer

			var err error
			elem.counter = binary.LittleEndian.Uint64(counter)
			elem.packet, err = elem.keyPair.receive.Open(
				content[:0],
				nonce[:],
				content,
				nil,
			)
			if err != nil {
				elem.Drop()
			}
			elem.mutex.Unlock()
		}
	}
}

/* Handles incoming packets related to handshake
 */
func (device *Device) RoutineHandshake() {

	logInfo := device.log.Info
	logError := device.log.Error
	logDebug := device.log.Debug
	logDebug.Println("Routine, handshake routine, started for device")

	var temp [MessageHandshakeSize]byte
	var elem QueueHandshakeElement

	for {
		select {
		case elem = <-device.queue.handshake:
		case <-device.signal.stop.Wait():
			return
		}

		// handle cookie fields and ratelimiting

		switch elem.msgType {

		case MessageCookieReplyType:

			// unmarshal packet

			var reply MessageCookieReply
			reader := bytes.NewReader(elem.packet)
			err := binary.Read(reader, binary.LittleEndian, &reply)
			if err != nil {
				logDebug.Println("Failed to decode cookie reply")
				return
			}

			// lookup peer from index

			entry := device.indices.Lookup(reply.Receiver)

			if entry.peer == nil {
				continue
			}

			// consume reply

			if peer := entry.peer; peer.isRunning.Get() {
				peer.mac.ConsumeReply(&reply)
			}

			continue

		case MessageInitiationType, MessageResponseType:

			// check mac fields and ratelimit

			if !device.mac.CheckMAC1(elem.packet) {
				logDebug.Println("Received packet with invalid mac1")
				continue
			}

			// endpoints destination address is the source of the datagram

			srcBytes := elem.endpoint.DstToBytes()

			if device.IsUnderLoad() {

				// verify MAC2 field

				if !device.mac.CheckMAC2(elem.packet, srcBytes) {

					// construct cookie reply

					logDebug.Println(
						"Sending cookie reply to:",
						elem.endpoint.DstToString(),
					)

					sender := binary.LittleEndian.Uint32(elem.packet[4:8])
					reply, err := device.mac.CreateReply(elem.packet, sender, srcBytes)
					if err != nil {
						logError.Println("Failed to create cookie reply:", err)
						continue
					}

					// marshal and send reply

					writer := bytes.NewBuffer(temp[:0])
					binary.Write(writer, binary.LittleEndian, reply)
					device.net.bind.Send(writer.Bytes(), elem.endpoint)
					if err != nil {
						logDebug.Println("Failed to send cookie reply:", err)
					}
					continue
				}

				// check ratelimiter

				if !device.rate.limiter.Allow(elem.endpoint.DstIP()) {
					continue
				}
			}

		default:
			logError.Println("Invalid packet ended up in the handshake queue")
			continue
		}

		// handle handshake initiation/response content

		switch elem.msgType {
		case MessageInitiationType:

			// unmarshal

			var msg MessageInitiation
			reader := bytes.NewReader(elem.packet)
			err := binary.Read(reader, binary.LittleEndian, &msg)
			if err != nil {
				logError.Println("Failed to decode initiation message")
				continue
			}

			// consume initiation

			peer := device.ConsumeMessageInitiation(&msg)
			if peer == nil {
				logInfo.Println(
					"Received invalid initiation message from",
					elem.endpoint.DstToString(),
				)
				continue
			}

			// update timers

			peer.TimerAnyAuthenticatedPacketTraversal()
			peer.TimerAnyAuthenticatedPacketReceived()

			// update endpoint

			peer.mutex.Lock()
			peer.endpoint = elem.endpoint
			peer.mutex.Unlock()

			// create response

			response, err := device.CreateMessageResponse(peer)
			if err != nil {
				logError.Println("Failed to create response message:", err)
				continue
			}

			peer.TimerEphemeralKeyCreated()
			peer.NewKeyPair()

			logDebug.Println(peer.String(), "Creating handshake response")

			writer := bytes.NewBuffer(temp[:0])
			binary.Write(writer, binary.LittleEndian, response)
			packet := writer.Bytes()
			peer.mac.AddMacs(packet)

			// send response

			err = peer.SendBuffer(packet)
			if err == nil {
				peer.TimerAnyAuthenticatedPacketTraversal()
			} else {
				logError.Println(peer.String(), "Failed to send handshake response", err)
			}

		case MessageResponseType:

			// unmarshal

			var msg MessageResponse
			reader := bytes.NewReader(elem.packet)
			err := binary.Read(reader, binary.LittleEndian, &msg)
			if err != nil {
				logError.Println("Failed to decode response message")
				continue
			}

			// consume response

			peer := device.ConsumeMessageResponse(&msg)
			if peer == nil {
				logInfo.Println(
					"Recieved invalid response message from",
					elem.endpoint.DstToString(),
				)
				continue
			}

			// update endpoint

			peer.mutex.Lock()
			peer.endpoint = elem.endpoint
			peer.mutex.Unlock()

			logDebug.Println("Received handshake initiation from", peer)

			peer.TimerEphemeralKeyCreated()

			// update timers

			peer.TimerAnyAuthenticatedPacketTraversal()
			peer.TimerAnyAuthenticatedPacketReceived()
			peer.TimerHandshakeComplete()

			// derive key-pair

			peer.NewKeyPair()
			peer.SendKeepAlive()
		}
	}
}

func (peer *Peer) RoutineSequentialReceiver() {

	device := peer.device
	logInfo := device.log.Info
	logError := device.log.Error
	logDebug := device.log.Debug

	func() {
		defer peer.routines.stopping.Done()
		logDebug.Println(peer.String(), ": Routine, Sequential Receiver, Stopped")
	}()

	logDebug.Println(peer.String(), ": Routine, Sequential Receiver, Started")

	peer.routines.starting.Done()

	for {

		select {

		case <-peer.routines.stop.Wait():
			return

		case elem := <-peer.queue.inbound:

			// wait for decryption

			elem.mutex.Lock()

			if elem.IsDropped() {
				continue
			}

			// check for replay

			if !elem.keyPair.replayFilter.ValidateCounter(elem.counter) {
				continue
			}

			peer.TimerAnyAuthenticatedPacketTraversal()
			peer.TimerAnyAuthenticatedPacketReceived()
			peer.KeepKeyFreshReceiving()

			// check if using new key-pair

			kp := &peer.keyPairs
			kp.mutex.Lock()
			if kp.next == elem.keyPair {
				peer.TimerHandshakeComplete()
				if kp.previous != nil {
					device.DeleteKeyPair(kp.previous)
				}
				kp.previous = kp.current
				kp.current = kp.next
				kp.next = nil
			}
			kp.mutex.Unlock()

			// update endpoint

			peer.mutex.Lock()
			peer.endpoint = elem.endpoint
			peer.mutex.Unlock()

			// check for keep-alive

			if len(elem.packet) == 0 {
				logDebug.Println("Received keep-alive from", peer.String())
				continue
			}
			peer.TimerDataReceived()

			// verify source and strip padding

			switch elem.packet[0] >> 4 {
			case ipv4.Version:

				// strip padding

				if len(elem.packet) < ipv4.HeaderLen {
					continue
				}

				field := elem.packet[IPv4offsetTotalLength : IPv4offsetTotalLength+2]
				length := binary.BigEndian.Uint16(field)
				if int(length) > len(elem.packet) || int(length) < ipv4.HeaderLen {
					continue
				}

				elem.packet = elem.packet[:length]

				// verify IPv4 source

				src := elem.packet[IPv4offsetSrc : IPv4offsetSrc+net.IPv4len]
				if device.routing.table.LookupIPv4(src) != peer {
					logInfo.Println(
						"IPv4 packet with disallowed source address from",
						peer.String(),
					)
					continue
				}

			case ipv6.Version:

				// strip padding

				if len(elem.packet) < ipv6.HeaderLen {
					continue
				}

				field := elem.packet[IPv6offsetPayloadLength : IPv6offsetPayloadLength+2]
				length := binary.BigEndian.Uint16(field)
				length += ipv6.HeaderLen
				if int(length) > len(elem.packet) {
					continue
				}

				elem.packet = elem.packet[:length]

				// verify IPv6 source

				src := elem.packet[IPv6offsetSrc : IPv6offsetSrc+net.IPv6len]
				if device.routing.table.LookupIPv6(src) != peer {
					logInfo.Println(
						"IPv6 packet with disallowed source address from",
						peer.String(),
					)
					continue
				}

			default:
				logInfo.Println("Packet with invalid IP version from", peer.String())
				continue
			}

			// write to tun device

			offset := MessageTransportOffsetContent
			atomic.AddUint64(&peer.stats.rxBytes, uint64(len(elem.packet)))
			_, err := device.tun.device.Write(
				elem.buffer[:offset+len(elem.packet)],
				offset)
			device.PutMessageBuffer(elem.buffer)
			if err != nil {
				logError.Println("Failed to write packet to TUN device:", err)
			}
		}
	}
}