summaryrefslogtreecommitdiffhomepage
path: root/send.go
diff options
context:
space:
mode:
authorMathias Hall-Andersen <mathias@hall-andersen.dk>2018-02-04 16:08:26 +0100
committerMathias Hall-Andersen <mathias@hall-andersen.dk>2018-02-04 16:08:26 +0100
commita0f54cbe5ac2cd8b8296c2c57c30029dd349cff0 (patch)
tree64574090d79ff3899c5c18e5268e450028e4656b /send.go
parent5871ec04deb8f4715cab37146940baa35c08cbee (diff)
Align with go library layout
Diffstat (limited to 'send.go')
-rw-r--r--send.go362
1 files changed, 362 insertions, 0 deletions
diff --git a/send.go b/send.go
new file mode 100644
index 0000000..7488d3a
--- /dev/null
+++ b/send.go
@@ -0,0 +1,362 @@
+package main
+
+import (
+ "encoding/binary"
+ "golang.org/x/crypto/chacha20poly1305"
+ "golang.org/x/net/ipv4"
+ "golang.org/x/net/ipv6"
+ "net"
+ "sync"
+ "sync/atomic"
+ "time"
+)
+
+/* Outbound flow
+ *
+ * 1. TUN queue
+ * 2. Routing (sequential)
+ * 3. Nonce assignment (sequential)
+ * 4. Encryption (parallel)
+ * 5. Transmission (sequential)
+ *
+ * The functions in this file occur (roughly) in the order in
+ * which the packets are processed.
+ *
+ * Locking, Producers and Consumers
+ *
+ * The order of packets (per peer) must be maintained,
+ * but encryption of packets happen out-of-order:
+ *
+ * The sequential consumers will attempt to take the lock,
+ * workers release lock when they have completed work (encryption) on the packet.
+ *
+ * If the element is inserted into the "encryption queue",
+ * the content is preceded by enough "junk" to contain the transport header
+ * (to allow the construction of transport messages in-place)
+ */
+
+type QueueOutboundElement struct {
+ dropped int32
+ mutex sync.Mutex
+ buffer *[MaxMessageSize]byte // slice holding the packet data
+ packet []byte // slice of "buffer" (always!)
+ nonce uint64 // nonce for encryption
+ keyPair *KeyPair // key-pair for encryption
+ peer *Peer // related peer
+}
+
+func (peer *Peer) FlushNonceQueue() {
+ elems := len(peer.queue.nonce)
+ for i := 0; i < elems; i++ {
+ select {
+ case <-peer.queue.nonce:
+ default:
+ return
+ }
+ }
+}
+
+func (device *Device) NewOutboundElement() *QueueOutboundElement {
+ return &QueueOutboundElement{
+ dropped: AtomicFalse,
+ buffer: device.pool.messageBuffers.Get().(*[MaxMessageSize]byte),
+ }
+}
+
+func (elem *QueueOutboundElement) Drop() {
+ atomic.StoreInt32(&elem.dropped, AtomicTrue)
+}
+
+func (elem *QueueOutboundElement) IsDropped() bool {
+ return atomic.LoadInt32(&elem.dropped) == AtomicTrue
+}
+
+func addToOutboundQueue(
+ queue chan *QueueOutboundElement,
+ element *QueueOutboundElement,
+) {
+ for {
+ select {
+ case queue <- element:
+ return
+ default:
+ select {
+ case old := <-queue:
+ old.Drop()
+ default:
+ }
+ }
+ }
+}
+
+func addToEncryptionQueue(
+ queue chan *QueueOutboundElement,
+ element *QueueOutboundElement,
+) {
+ for {
+ select {
+ case queue <- element:
+ return
+ default:
+ select {
+ case old := <-queue:
+ // drop & release to potential consumer
+ old.Drop()
+ old.mutex.Unlock()
+ default:
+ }
+ }
+ }
+}
+
+/* Reads packets from the TUN and inserts
+ * into nonce queue for peer
+ *
+ * Obs. Single instance per TUN device
+ */
+func (device *Device) RoutineReadFromTUN() {
+
+ elem := device.NewOutboundElement()
+
+ logDebug := device.log.Debug
+ logError := device.log.Error
+
+ logDebug.Println("Routine, TUN Reader started")
+
+ for {
+
+ // read packet
+
+ offset := MessageTransportHeaderSize
+ size, err := device.tun.device.Read(elem.buffer[:], offset)
+
+ if err != nil {
+ logError.Println("Failed to read packet from TUN device:", err)
+ device.Close()
+ return
+ }
+
+ if size == 0 || size > MaxContentSize {
+ continue
+ }
+
+ elem.packet = elem.buffer[offset : offset+size]
+
+ // lookup peer
+
+ var peer *Peer
+ switch elem.packet[0] >> 4 {
+ case ipv4.Version:
+ if len(elem.packet) < ipv4.HeaderLen {
+ continue
+ }
+ dst := elem.packet[IPv4offsetDst : IPv4offsetDst+net.IPv4len]
+ peer = device.routing.table.LookupIPv4(dst)
+
+ case ipv6.Version:
+ if len(elem.packet) < ipv6.HeaderLen {
+ continue
+ }
+ dst := elem.packet[IPv6offsetDst : IPv6offsetDst+net.IPv6len]
+ peer = device.routing.table.LookupIPv6(dst)
+
+ default:
+ logDebug.Println("Received packet with unknown IP version")
+ }
+
+ if peer == nil {
+ continue
+ }
+
+ // insert into nonce/pre-handshake queue
+
+ if peer.isRunning.Get() {
+ peer.timer.handshakeDeadline.Reset(RekeyAttemptTime)
+ addToOutboundQueue(peer.queue.nonce, elem)
+ elem = device.NewOutboundElement()
+ }
+ }
+}
+
+/* Queues packets when there is no handshake.
+ * Then assigns nonces to packets sequentially
+ * and creates "work" structs for workers
+ *
+ * Obs. A single instance per peer
+ */
+func (peer *Peer) RoutineNonce() {
+ var keyPair *KeyPair
+
+ defer peer.routines.stopping.Done()
+
+ device := peer.device
+ logDebug := device.log.Debug
+ logDebug.Println("Routine, nonce worker, started for peer", peer.String())
+
+ peer.routines.starting.Done()
+
+ for {
+ NextPacket:
+ select {
+ case <-peer.routines.stop.Wait():
+ return
+
+ case elem := <-peer.queue.nonce:
+
+ // wait for key pair
+
+ for {
+ keyPair = peer.keyPairs.Current()
+ if keyPair != nil && keyPair.sendNonce < RejectAfterMessages {
+ if time.Now().Sub(keyPair.created) < RejectAfterTime {
+ break
+ }
+ }
+
+ peer.signal.handshakeBegin.Send()
+
+ logDebug.Println("Awaiting key-pair for", peer.String())
+
+ select {
+ case <-peer.signal.newKeyPair.Wait():
+ case <-peer.signal.flushNonceQueue.Wait():
+ logDebug.Println("Clearing queue for", peer.String())
+ peer.FlushNonceQueue()
+ goto NextPacket
+ case <-peer.routines.stop.Wait():
+ return
+ }
+ }
+
+ // populate work element
+
+ elem.peer = peer
+ elem.nonce = atomic.AddUint64(&keyPair.sendNonce, 1) - 1
+ elem.keyPair = keyPair
+ elem.dropped = AtomicFalse
+ elem.mutex.Lock()
+
+ // add to parallel and sequential queue
+
+ addToEncryptionQueue(device.queue.encryption, elem)
+ addToOutboundQueue(peer.queue.outbound, elem)
+ }
+ }
+}
+
+/* Encrypts the elements in the queue
+ * and marks them for sequential consumption (by releasing the mutex)
+ *
+ * Obs. One instance per core
+ */
+func (device *Device) RoutineEncryption() {
+
+ var nonce [chacha20poly1305.NonceSize]byte
+
+ logDebug := device.log.Debug
+ logDebug.Println("Routine, encryption worker, started")
+
+ for {
+
+ // fetch next element
+
+ select {
+ case <-device.signal.stop.Wait():
+ logDebug.Println("Routine, encryption worker, stopped")
+ return
+
+ case elem := <-device.queue.encryption:
+
+ // check if dropped
+
+ if elem.IsDropped() {
+ continue
+ }
+
+ // populate header fields
+
+ header := elem.buffer[:MessageTransportHeaderSize]
+
+ fieldType := header[0:4]
+ fieldReceiver := header[4:8]
+ fieldNonce := header[8:16]
+
+ binary.LittleEndian.PutUint32(fieldType, MessageTransportType)
+ binary.LittleEndian.PutUint32(fieldReceiver, elem.keyPair.remoteIndex)
+ binary.LittleEndian.PutUint64(fieldNonce, elem.nonce)
+
+ // pad content to multiple of 16
+
+ mtu := int(atomic.LoadInt32(&device.tun.mtu))
+ rem := len(elem.packet) % PaddingMultiple
+ if rem > 0 {
+ for i := 0; i < PaddingMultiple-rem && len(elem.packet) < mtu; i++ {
+ elem.packet = append(elem.packet, 0)
+ }
+ }
+
+ // encrypt content and release to consumer
+
+ binary.LittleEndian.PutUint64(nonce[4:], elem.nonce)
+ elem.packet = elem.keyPair.send.Seal(
+ header,
+ nonce[:],
+ elem.packet,
+ nil,
+ )
+ elem.mutex.Unlock()
+ }
+ }
+}
+
+/* Sequentially reads packets from queue and sends to endpoint
+ *
+ * Obs. Single instance per peer.
+ * The routine terminates then the outbound queue is closed.
+ */
+func (peer *Peer) RoutineSequentialSender() {
+
+ defer peer.routines.stopping.Done()
+
+ device := peer.device
+
+ logDebug := device.log.Debug
+ logDebug.Println("Routine, sequential sender, started for", peer.String())
+
+ peer.routines.starting.Done()
+
+ for {
+ select {
+
+ case <-peer.routines.stop.Wait():
+ logDebug.Println(
+ "Routine, sequential sender, stopped for", peer.String())
+ return
+
+ case elem := <-peer.queue.outbound:
+ elem.mutex.Lock()
+ if elem.IsDropped() {
+ continue
+ }
+
+ // send message and return buffer to pool
+
+ length := uint64(len(elem.packet))
+ err := peer.SendBuffer(elem.packet)
+ device.PutMessageBuffer(elem.buffer)
+ if err != nil {
+ logDebug.Println("Failed to send authenticated packet to peer", peer.String())
+ continue
+ }
+ atomic.AddUint64(&peer.stats.txBytes, length)
+
+ // update timers
+
+ peer.TimerAnyAuthenticatedPacketTraversal()
+ if len(elem.packet) != MessageKeepaliveSize {
+ peer.TimerDataSent()
+ }
+ peer.KeepKeyFreshSending()
+ }
+ }
+}