1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
|
/*
* Copyright © 2016 Southern Storm Software, Pty Ltd.
* SPDX-License-Identifier: Apache-2.0
*/
package com.wireguard.crypto;
import android.support.annotation.Nullable;
import java.util.Arrays;
/**
* Implementation of the Curve25519 elliptic curve algorithm.
* <p>
* This implementation was imported to WireGuard from noise-java:
* https://github.com/rweather/noise-java
* <p>
* This implementation is based on that from arduinolibs:
* https://github.com/rweather/arduinolibs
* <p>
* Differences in this version are due to using 26-bit limbs for the
* representation instead of the 8/16/32-bit limbs in the original.
* <p>
* References: http://cr.yp.to/ecdh.html, RFC 7748
*/
@SuppressWarnings({"MagicNumber", "NonConstantFieldWithUpperCaseName", "SuspiciousNameCombination"})
public final class Curve25519 {
// Numbers modulo 2^255 - 19 are broken up into ten 26-bit words.
private static final int NUM_LIMBS_255BIT = 10;
private static final int NUM_LIMBS_510BIT = 20;
private final int[] A;
private final int[] AA;
private final int[] B;
private final int[] BB;
private final int[] C;
private final int[] CB;
private final int[] D;
private final int[] DA;
private final int[] E;
private final long[] t1;
private final int[] t2;
private final int[] x_1;
private final int[] x_2;
private final int[] x_3;
private final int[] z_2;
private final int[] z_3;
/**
* Constructs the temporary state holder for Curve25519 evaluation.
*/
private Curve25519() {
// Allocate memory for all of the temporary variables we will need.
x_1 = new int[NUM_LIMBS_255BIT];
x_2 = new int[NUM_LIMBS_255BIT];
x_3 = new int[NUM_LIMBS_255BIT];
z_2 = new int[NUM_LIMBS_255BIT];
z_3 = new int[NUM_LIMBS_255BIT];
A = new int[NUM_LIMBS_255BIT];
B = new int[NUM_LIMBS_255BIT];
C = new int[NUM_LIMBS_255BIT];
D = new int[NUM_LIMBS_255BIT];
E = new int[NUM_LIMBS_255BIT];
AA = new int[NUM_LIMBS_255BIT];
BB = new int[NUM_LIMBS_255BIT];
DA = new int[NUM_LIMBS_255BIT];
CB = new int[NUM_LIMBS_255BIT];
t1 = new long[NUM_LIMBS_510BIT];
t2 = new int[NUM_LIMBS_510BIT];
}
/**
* Conditional swap of two values.
*
* @param select Set to 1 to swap, 0 to leave as-is.
* @param x The first value.
* @param y The second value.
*/
private static void cswap(int select, final int[] x, final int[] y) {
select = -select;
for (int index = 0; index < NUM_LIMBS_255BIT; ++index) {
final int dummy = select & (x[index] ^ y[index]);
x[index] ^= dummy;
y[index] ^= dummy;
}
}
/**
* Evaluates the Curve25519 curve.
*
* @param result Buffer to place the result of the evaluation into.
* @param offset Offset into the result buffer.
* @param privateKey The private key to use in the evaluation.
* @param publicKey The public key to use in the evaluation, or null
* if the base point of the curve should be used.
*/
public static void eval(final byte[] result, final int offset,
final byte[] privateKey, @Nullable final byte[] publicKey) {
final Curve25519 state = new Curve25519();
try {
// Unpack the public key value. If null, use 9 as the base point.
Arrays.fill(state.x_1, 0);
if (publicKey != null) {
// Convert the input value from little-endian into 26-bit limbs.
for (int index = 0; index < 32; ++index) {
final int bit = (index * 8) % 26;
final int word = (index * 8) / 26;
final int value = publicKey[index] & 0xFF;
if (bit <= (26 - 8)) {
state.x_1[word] |= value << bit;
} else {
state.x_1[word] |= value << bit;
state.x_1[word] &= 0x03FFFFFF;
state.x_1[word + 1] |= value >> (26 - bit);
}
}
// Just in case, we reduce the number modulo 2^255 - 19 to
// make sure that it is in range of the field before we start.
// This eliminates values between 2^255 - 19 and 2^256 - 1.
state.reduceQuick(state.x_1);
state.reduceQuick(state.x_1);
} else {
state.x_1[0] = 9;
}
// Initialize the other temporary variables.
Arrays.fill(state.x_2, 0); // x_2 = 1
state.x_2[0] = 1;
Arrays.fill(state.z_2, 0); // z_2 = 0
System.arraycopy(state.x_1, 0, state.x_3, 0, state.x_1.length); // x_3 = x_1
Arrays.fill(state.z_3, 0); // z_3 = 1
state.z_3[0] = 1;
// Evaluate the curve for every bit of the private key.
state.evalCurve(privateKey);
// Compute x_2 * (z_2 ^ (p - 2)) where p = 2^255 - 19.
state.recip(state.z_3, state.z_2);
state.mul(state.x_2, state.x_2, state.z_3);
// Convert x_2 into little-endian in the result buffer.
for (int index = 0; index < 32; ++index) {
final int bit = (index * 8) % 26;
final int word = (index * 8) / 26;
if (bit <= (26 - 8))
result[offset + index] = (byte) (state.x_2[word] >> bit);
else
result[offset + index] = (byte) ((state.x_2[word] >> bit) | (state.x_2[word + 1] << (26 - bit)));
}
} finally {
// Clean up all temporary state before we exit.
state.destroy();
}
}
/**
* Subtracts two numbers modulo 2^255 - 19.
*
* @param result The result.
* @param x The first number to subtract.
* @param y The second number to subtract.
*/
private static void sub(final int[] result, final int[] x, final int[] y) {
int index;
int borrow;
// Subtract y from x to generate the intermediate result.
borrow = 0;
for (index = 0; index < NUM_LIMBS_255BIT; ++index) {
borrow = x[index] - y[index] - ((borrow >> 26) & 0x01);
result[index] = borrow & 0x03FFFFFF;
}
// If we had a borrow, then the result has gone negative and we
// have to add 2^255 - 19 to the result to make it positive again.
// The top bits of "borrow" will be all 1's if there is a borrow
// or it will be all 0's if there was no borrow. Easiest is to
// conditionally subtract 19 and then mask off the high bits.
borrow = result[0] - ((-((borrow >> 26) & 0x01)) & 19);
result[0] = borrow & 0x03FFFFFF;
for (index = 1; index < NUM_LIMBS_255BIT; ++index) {
borrow = result[index] - ((borrow >> 26) & 0x01);
result[index] = borrow & 0x03FFFFFF;
}
result[NUM_LIMBS_255BIT - 1] &= 0x001FFFFF;
}
/**
* Adds two numbers modulo 2^255 - 19.
*
* @param result The result.
* @param x The first number to add.
* @param y The second number to add.
*/
private void add(final int[] result, final int[] x, final int[] y) {
int carry = x[0] + y[0];
result[0] = carry & 0x03FFFFFF;
for (int index = 1; index < NUM_LIMBS_255BIT; ++index) {
carry = (carry >> 26) + x[index] + y[index];
result[index] = carry & 0x03FFFFFF;
}
reduceQuick(result);
}
/**
* Destroy all sensitive data in this object.
*/
private void destroy() {
// Destroy all temporary variables.
Arrays.fill(x_1, 0);
Arrays.fill(x_2, 0);
Arrays.fill(x_3, 0);
Arrays.fill(z_2, 0);
Arrays.fill(z_3, 0);
Arrays.fill(A, 0);
Arrays.fill(B, 0);
Arrays.fill(C, 0);
Arrays.fill(D, 0);
Arrays.fill(E, 0);
Arrays.fill(AA, 0);
Arrays.fill(BB, 0);
Arrays.fill(DA, 0);
Arrays.fill(CB, 0);
Arrays.fill(t1, 0L);
Arrays.fill(t2, 0);
}
/**
* Evaluates the curve for every bit in a secret key.
*
* @param s The 32-byte secret key.
*/
private void evalCurve(final byte[] s) {
int sposn = 31;
int sbit = 6;
int svalue = s[sposn] | 0x40;
int swap = 0;
// Iterate over all 255 bits of "s" from the highest to the lowest.
// We ignore the high bit of the 256-bit representation of "s".
while (true) {
// Conditional swaps on entry to this bit but only if we
// didn't swap on the previous bit.
final int select = (svalue >> sbit) & 0x01;
swap ^= select;
cswap(swap, x_2, x_3);
cswap(swap, z_2, z_3);
swap = select;
// Evaluate the curve.
add(A, x_2, z_2); // A = x_2 + z_2
square(AA, A); // AA = A^2
sub(B, x_2, z_2); // B = x_2 - z_2
square(BB, B); // BB = B^2
sub(E, AA, BB); // E = AA - BB
add(C, x_3, z_3); // C = x_3 + z_3
sub(D, x_3, z_3); // D = x_3 - z_3
mul(DA, D, A); // DA = D * A
mul(CB, C, B); // CB = C * B
add(x_3, DA, CB); // x_3 = (DA + CB)^2
square(x_3, x_3);
sub(z_3, DA, CB); // z_3 = x_1 * (DA - CB)^2
square(z_3, z_3);
mul(z_3, z_3, x_1);
mul(x_2, AA, BB); // x_2 = AA * BB
mulA24(z_2, E); // z_2 = E * (AA + a24 * E)
add(z_2, z_2, AA);
mul(z_2, z_2, E);
// Move onto the next lower bit of "s".
if (sbit > 0) {
--sbit;
} else if (sposn == 0) {
break;
} else if (sposn == 1) {
--sposn;
svalue = s[sposn] & 0xF8;
sbit = 7;
} else {
--sposn;
svalue = s[sposn];
sbit = 7;
}
}
// Final conditional swaps.
cswap(swap, x_2, x_3);
cswap(swap, z_2, z_3);
}
/**
* Multiplies two numbers modulo 2^255 - 19.
*
* @param result The result.
* @param x The first number to multiply.
* @param y The second number to multiply.
*/
private void mul(final int[] result, final int[] x, final int[] y) {
// Multiply the two numbers to create the intermediate result.
long v = x[0];
for (int i = 0; i < NUM_LIMBS_255BIT; ++i) {
t1[i] = v * y[i];
}
for (int i = 1; i < NUM_LIMBS_255BIT; ++i) {
v = x[i];
for (int j = 0; j < (NUM_LIMBS_255BIT - 1); ++j) {
t1[i + j] += v * y[j];
}
t1[i + NUM_LIMBS_255BIT - 1] = v * y[NUM_LIMBS_255BIT - 1];
}
// Propagate carries and convert back into 26-bit words.
v = t1[0];
t2[0] = ((int) v) & 0x03FFFFFF;
for (int i = 1; i < NUM_LIMBS_510BIT; ++i) {
v = (v >> 26) + t1[i];
t2[i] = ((int) v) & 0x03FFFFFF;
}
// Reduce the result modulo 2^255 - 19.
reduce(result, t2, NUM_LIMBS_255BIT);
}
/**
* Multiplies a number by the a24 constant, modulo 2^255 - 19.
*
* @param result The result.
* @param x The number to multiply by a24.
*/
private void mulA24(final int[] result, final int[] x) {
final long a24 = 121665;
long carry = 0;
for (int index = 0; index < NUM_LIMBS_255BIT; ++index) {
carry += a24 * x[index];
t2[index] = ((int) carry) & 0x03FFFFFF;
carry >>= 26;
}
t2[NUM_LIMBS_255BIT] = ((int) carry) & 0x03FFFFFF;
reduce(result, t2, 1);
}
/**
* Raise x to the power of (2^250 - 1).
*
* @param result The result. Must not overlap with x.
* @param x The argument.
*/
private void pow250(final int[] result, final int[] x) {
// The big-endian hexadecimal expansion of (2^250 - 1) is:
// 03FFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
//
// The naive implementation needs to do 2 multiplications per 1 bit and
// 1 multiplication per 0 bit. We can improve upon this by creating a
// pattern 0000000001 ... 0000000001. If we square and multiply the
// pattern by itself we can turn the pattern into the partial results
// 0000000011 ... 0000000011, 0000000111 ... 0000000111, etc.
// This averages out to about 1.1 multiplications per 1 bit instead of 2.
// Build a pattern of 250 bits in length of repeated copies of 0000000001.
square(A, x);
for (int j = 0; j < 9; ++j)
square(A, A);
mul(result, A, x);
for (int i = 0; i < 23; ++i) {
for (int j = 0; j < 10; ++j)
square(A, A);
mul(result, result, A);
}
// Multiply bit-shifted versions of the 0000000001 pattern into
// the result to "fill in" the gaps in the pattern.
square(A, result);
mul(result, result, A);
for (int j = 0; j < 8; ++j) {
square(A, A);
mul(result, result, A);
}
}
/**
* Computes the reciprocal of a number modulo 2^255 - 19.
*
* @param result The result. Must not overlap with x.
* @param x The argument.
*/
private void recip(final int[] result, final int[] x) {
// The reciprocal is the same as x ^ (p - 2) where p = 2^255 - 19.
// The big-endian hexadecimal expansion of (p - 2) is:
// 7FFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFEB
// Start with the 250 upper bits of the expansion of (p - 2).
pow250(result, x);
// Deal with the 5 lowest bits of (p - 2), 01011, from highest to lowest.
square(result, result);
square(result, result);
mul(result, result, x);
square(result, result);
square(result, result);
mul(result, result, x);
square(result, result);
mul(result, result, x);
}
/**
* Reduce a number modulo 2^255 - 19.
*
* @param result The result.
* @param x The value to be reduced. This array will be
* modified during the reduction.
* @param size The number of limbs in the high order half of x.
*/
private void reduce(final int[] result, final int[] x, final int size) {
// Calculate (x mod 2^255) + ((x / 2^255) * 19) which will
// either produce the answer we want or it will produce a
// value of the form "answer + j * (2^255 - 19)". There are
// 5 left-over bits in the top-most limb of the bottom half.
int carry = 0;
int limb = x[NUM_LIMBS_255BIT - 1] >> 21;
x[NUM_LIMBS_255BIT - 1] &= 0x001FFFFF;
for (int index = 0; index < size; ++index) {
limb += x[NUM_LIMBS_255BIT + index] << 5;
carry += (limb & 0x03FFFFFF) * 19 + x[index];
x[index] = carry & 0x03FFFFFF;
limb >>= 26;
carry >>= 26;
}
if (size < NUM_LIMBS_255BIT) {
// The high order half of the number is short; e.g. for mulA24().
// Propagate the carry through the rest of the low order part.
for (int index = size; index < NUM_LIMBS_255BIT; ++index) {
carry += x[index];
x[index] = carry & 0x03FFFFFF;
carry >>= 26;
}
}
// The "j" value may still be too large due to the final carry-out.
// We must repeat the reduction. If we already have the answer,
// then this won't do any harm but we must still do the calculation
// to preserve the overall timing. The "j" value will be between
// 0 and 19, which means that the carry we care about is in the
// top 5 bits of the highest limb of the bottom half.
carry = (x[NUM_LIMBS_255BIT - 1] >> 21) * 19;
x[NUM_LIMBS_255BIT - 1] &= 0x001FFFFF;
for (int index = 0; index < NUM_LIMBS_255BIT; ++index) {
carry += x[index];
result[index] = carry & 0x03FFFFFF;
carry >>= 26;
}
// At this point "x" will either be the answer or it will be the
// answer plus (2^255 - 19). Perform a trial subtraction to
// complete the reduction process.
reduceQuick(result);
}
/**
* Reduces a number modulo 2^255 - 19 where it is known that the
* number can be reduced with only 1 trial subtraction.
*
* @param x The number to reduce, and the result.
*/
private void reduceQuick(final int[] x) {
// Perform a trial subtraction of (2^255 - 19) from "x" which is
// equivalent to adding 19 and subtracting 2^255. We add 19 here;
// the subtraction of 2^255 occurs in the next step.
int carry = 19;
for (int index = 0; index < NUM_LIMBS_255BIT; ++index) {
carry += x[index];
t2[index] = carry & 0x03FFFFFF;
carry >>= 26;
}
// If there was a borrow, then the original "x" is the correct answer.
// If there was no borrow, then "t2" is the correct answer. Select the
// correct answer but do it in a way that instruction timing will not
// reveal which value was selected. Borrow will occur if bit 21 of
// "t2" is zero. Turn the bit into a selection mask.
final int mask = -((t2[NUM_LIMBS_255BIT - 1] >> 21) & 0x01);
final int nmask = ~mask;
t2[NUM_LIMBS_255BIT - 1] &= 0x001FFFFF;
for (int index = 0; index < NUM_LIMBS_255BIT; ++index)
x[index] = (x[index] & nmask) | (t2[index] & mask);
}
/**
* Squares a number modulo 2^255 - 19.
*
* @param result The result.
* @param x The number to square.
*/
private void square(final int[] result, final int[] x) {
mul(result, x, x);
}
}
|