1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
|
/*
* Copyright (C) 2020 Jo-Philipp Wich <jo@mein.io>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
%token_type {uint32_t}
%extra_argument {struct ut_state *s}
%nonassoc T_LEXP T_REXP T_LSTM T_RSTM.
%nonassoc T_IF.
%nonassoc T_ELSE.
%left T_COMMA.
%right T_ASBAND T_ASBXOR T_ASBOR.
%right T_ASLEFT T_ASRIGHT.
%right T_ASMUL T_ASDIV T_ASMOD.
%right T_ASADD T_ASSUB.
%right T_ASSIGN.
%right T_QMARK T_COLON.
%left T_OR.
%left T_AND.
%left T_BOR.
%left T_BXOR.
%left T_BAND.
%left T_EQ T_NE T_EQS T_NES.
%left T_LT T_LE T_GT T_GE T_IN.
%left T_LSHIFT T_RSHIFT.
%left T_ADD T_SUB.
%left T_MUL T_DIV T_MOD.
%right T_NOT T_COMPL.
%right T_INC T_DEC.
%left T_LPAREN T_LBRACK.
%include {
#include <assert.h>
#include <stddef.h>
#include <stdlib.h>
#include <string.h>
#include "ast.h"
#include "lib.h"
#include "lexer.h"
#include "parser.h"
#define YYSTACKDEPTH 0
#define YYNOERRORRECOVERY
#define new_op(type, val, ...) \
ut_new_op(s, type, val, ##__VA_ARGS__, UINT32_MAX)
#define wrap_op(op, ...) \
ut_wrap_op(s, op, ##__VA_ARGS__, UINT32_MAX)
#define append_op(op1, op2) \
ut_append_op(s, op1, op2)
#define no_empty_obj(op) \
ut_no_empty_obj(s, op)
static inline uint32_t
ut_no_empty_obj(struct ut_state *s, uint32_t off)
{
struct ut_op *op = ut_get_op(s, off);
return (!op || op->type != T_LBRACE || op->tree.operand[0]) ? off : 0;
}
static inline uint32_t
ut_add_else(struct ut_state *s, uint32_t off, uint32_t add)
{
struct ut_op *tail = ut_get_op(s, off);
while (tail && tail->tree.operand[2])
tail = ut_get_op(s, tail->tree.operand[2]);
tail->tree.operand[2] = add;
return off;
}
static inline uint32_t
ut_expect_token(struct ut_state *s, uint32_t off, int token)
{
uint64_t tokens[(__T_MAX + 63) & -64] = {};
tokens[token / 64] |= ((uint64_t)1 << (token % 64));
ut_parse_error(s, off, tokens, token);
return 0;
}
static inline uint32_t
_ut_check_op_seq_types(struct ut_state *s, uint32_t off, ...)
{
uint64_t tokens[(__T_MAX + 63) & -64] = {};
struct ut_op *arg = ut_get_op(s, off);
int token, max_token = 0;
va_list ap;
va_start(ap, off);
while ((token = va_arg(ap, int)) != 0) {
tokens[token / 64] |= ((uint64_t)1 << (token % 64));
max_token = (token > max_token) ? token : max_token;
}
va_end(ap);
while (arg) {
if (!(tokens[arg->type / 64] & ((uint64_t)1 << (arg->type % 64)))) {
ut_parse_error(s, off, tokens, max_token);
return 0;
}
arg = ut_get_op(s, arg->tree.next);
}
return off;
}
#define ut_check_op_seq_types(s, off, ...) _ut_check_op_seq_types(s, off, __VA_ARGS__, 0)
static inline uint32_t
ut_reject_local(struct ut_state *s, uint32_t off)
{
struct ut_op *op = ut_get_op(s, off);
if (op->type == T_LOCAL) {
ut_new_exception(s, op->off, "Syntax error: Unexpected token\nDeclaration not allowed in this context");
return 0;
}
return off;
}
static inline uint32_t
ut_check_for_in(struct ut_state *s, uint32_t off)
{
struct ut_op *op = ut_get_op(s, off);
struct ut_op *arg;
uint32_t idx = 0;
arg = (op->type == T_LOCAL) ? ut_get_op(s, op->tree.operand[0]) : op;
if (arg->type == T_LABEL) {
idx = ut_get_off(s, arg);
if (!arg->tree.next) {
ut_new_exception(s, arg->off + json_object_get_string_len(arg->val),
"Syntax error: Unexpected token\nExpecting ',' or 'in'");
return 0;
}
arg = ut_get_op(s, arg->tree.next);
}
if (arg->type != T_IN || arg->tree.next || ut_get_op(s, arg->tree.operand[0])->type != T_LABEL) {
if (arg->type == T_IN && arg->tree.next)
arg = ut_get_op(s, arg->tree.next);
ut_new_exception(s, arg->off, "Syntax error: Invalid for-in expression");
return 0;
}
/* transform T_LABEL->T_IN(T_LABEL, ...) into T_IN(T_LABEL->T_LABEL, ...) */
if (idx) {
ut_get_op(s, idx)->tree.next = 0;
arg->tree.operand[0] = append_op(idx, arg->tree.operand[0]);
if (op->type == T_LOCAL)
op->tree.operand[0] = ut_get_off(s, arg);
else
off = ut_get_off(s, arg);
}
return off;
}
}
%syntax_error {
uint64_t tokens[(__T_MAX + 63) & -64] = {};
int i, max_token = 0;
for (i = 0; i < __T_MAX; i++) {
if (yy_find_shift_action(yypParser, (YYCODETYPE)i) < YYNSTATE + YYNRULE) {
tokens[i / 64] |= ((uint64_t)1 << (i % 64));
max_token = i;
}
}
ut_parse_error(s, TOKEN, tokens, max_token);
}
input ::= chunks(A). { s->main = new_op(T_FUNC, NULL, 0, 0, A); }
input ::= . { s->main = new_op(T_TEXT, xjs_new_string("")); s->main = new_op(T_FUNC, NULL, 0, 0, s->main); }
chunks(A) ::= chunks(B) T_TEXT(C). { A = B ? append_op(B, C) : C; }
chunks(A) ::= chunks(B) tplexp(C). { A = B ? append_op(B, C) : C; }
chunks(A) ::= chunks(B) stmt(C). { A = B ? append_op(B, C) : C; }
chunks(A) ::= T_TEXT(B). { A = B; }
chunks(A) ::= tplexp(B). { A = B; }
chunks(A) ::= stmt(B). { A = B; }
tplexp(A) ::= T_LEXP(B) exp_stmt(C) T_REXP. { A = wrap_op(B, C); }
stmts(A) ::= stmts(B) stmt(C). { A = B ? append_op(B, C) : C; }
stmts(A) ::= stmt(B). { A = B; }
stmt(A) ::= cpd_stmt(B). { A = B; }
stmt(A) ::= exp_stmt(B). { A = B; }
stmt(A) ::= sel_stmt(B). { A = B; }
stmt(A) ::= iter_stmt(B). { A = B; }
stmt(A) ::= func_stmt(B). { A = B; }
stmt(A) ::= try_stmt(B). { A = B; }
stmt(A) ::= switch_stmt(B). { A = B; }
stmt(A) ::= ret_stmt(B). { A = B; }
stmt(A) ::= break_stmt(B). { A = B; }
stmt(A) ::= decl_stmt(B). { A = B; }
//cpd_stmt(A) ::= T_LBRACE T_RBRACE. { A = NULL; }
cpd_stmt(A) ::= T_LBRACE stmts(B) exp(C) T_RBRACE. { A = B ? append_op(B, C) : C; }
cpd_stmt(A) ::= T_LBRACE stmts(B) T_RBRACE. { A = B; }
cpd_stmt(A) ::= T_LBRACE exp(B) T_RBRACE. { A = B; }
exp_stmt(A) ::= exp(B) T_SCOL. { A = B; }
exp_stmt(A) ::= T_SCOL. { A = 0; }
sel_stmt(A) ::= T_IF(B) T_LPAREN exp(C) T_RPAREN stmt(D) T_ELSE stmt(E).
{ A = wrap_op(B, C, no_empty_obj(D), no_empty_obj(E)); }
sel_stmt(A) ::= T_IF(B) T_LPAREN exp(C) T_RPAREN stmt(D). [T_IF]
{ A = wrap_op(B, C, no_empty_obj(D)); }
sel_stmt(A) ::= T_IF(B) T_LPAREN exp(C) T_RPAREN T_COLON chunks(D) sel_elifs(E) T_ELSE chunks(F) T_ENDIF.
{ A = ut_add_else(s, wrap_op(B, C, D, E), F); }
sel_stmt(A) ::= T_IF(B) T_LPAREN exp(C) T_RPAREN T_COLON chunks(D) T_ELSE chunks(E) T_ENDIF.
{ A = wrap_op(B, C, D, E); }
sel_stmt(A) ::= T_IF(B) T_LPAREN exp(C) T_RPAREN T_COLON chunks(D) T_ENDIF. [T_IF]
{ A = wrap_op(B, C, D); }
sel_elifs(A) ::= sel_elifs(B) sel_elif(C). { A = ut_add_else(s, B, C); }
sel_elifs(A) ::= sel_elif(B). { A = B; }
sel_elif(A) ::= T_ELIF(B) T_LPAREN exp(C) T_RPAREN T_COLON chunks(D).
{ A = wrap_op(B, C, D); }
iter_stmt(A) ::= T_WHILE(B) T_LPAREN exp(C) T_RPAREN stmt(D).
{ A = wrap_op(B, C, no_empty_obj(D)); }
iter_stmt(A) ::= T_WHILE(B) T_LPAREN exp(C) T_RPAREN T_COLON chunks(D) T_ENDWHILE.
{ A = wrap_op(B, C, D); }
iter_stmt(A) ::= T_FOR(B) paren_exp(C) stmt(D).
{ A = wrap_op(B, ut_check_for_in(s, C), NULL, NULL, no_empty_obj(D)); ut_get_op(s, A)->is_for_in = 1; }
iter_stmt(A) ::= T_FOR(B) paren_exp(C) T_COLON chunks(D) T_ENDFOR.
{ A = wrap_op(B, ut_check_for_in(s, C), NULL, NULL, no_empty_obj(D)); ut_get_op(s, A)->is_for_in = 1; }
iter_stmt(A) ::= T_FOR(B) T_LPAREN decl_or_exp(C) exp_stmt(D) T_RPAREN stmt(E).
{ A = wrap_op(B, C, D, NULL, no_empty_obj(E)); }
iter_stmt(A) ::= T_FOR(B) T_LPAREN decl_or_exp(C) exp_stmt(D) exp(E) T_RPAREN stmt(F).
{ A = wrap_op(B, C, D, E, no_empty_obj(F)); }
iter_stmt(A) ::= T_FOR(B) T_LPAREN decl_or_exp(C) exp_stmt(D) T_RPAREN T_COLON chunks(E) T_ENDFOR.
{ A = wrap_op(B, C, D, NULL, E); }
iter_stmt(A) ::= T_FOR(B) T_LPAREN decl_or_exp(C) exp_stmt(D) exp(E) T_RPAREN T_COLON chunks(F) T_ENDFOR.
{ A = wrap_op(B, C, D, E, F); }
func_stmt(A) ::= T_FUNC(B) T_LABEL(C) T_LPAREN T_RPAREN cpd_stmt(D).
{ A = wrap_op(B, C, 0, D); }
func_stmt(A) ::= T_FUNC(B) T_LABEL(C) T_LPAREN T_RPAREN empty_object.
{ A = wrap_op(B, C, 0, 0); }
func_stmt(A) ::= T_FUNC(B) T_LABEL(C) T_LPAREN T_RPAREN T_COLON chunks(D) T_ENDFUNC.
{ A = wrap_op(B, C, 0, D); }
func_stmt(A) ::= T_FUNC(B) T_LABEL(C) T_LPAREN args(D) T_RPAREN cpd_stmt(E).
{ A = wrap_op(B, C, D, E); }
func_stmt(A) ::= T_FUNC(B) T_LABEL(C) T_LPAREN args(D) T_RPAREN empty_object.
{ A = wrap_op(B, C, D, 0); }
func_stmt(A) ::= T_FUNC(B) T_LABEL(C) T_LPAREN args(D) T_RPAREN T_COLON chunks(E) T_ENDFUNC.
{ A = wrap_op(B, C, D, E); }
try_stmt(A) ::= T_TRY(B) try_catch_block(C) T_CATCH T_LPAREN T_LABEL(D) T_RPAREN try_catch_block(E).
{ A = wrap_op(B, C, D, E); }
try_stmt(A) ::= T_TRY(B) try_catch_block(C) T_CATCH try_catch_block(D).
{ A = wrap_op(B, C, 0, D); }
try_catch_block(A) ::= cpd_stmt(B). { A = B; }
try_catch_block(A) ::= empty_object. { A = 0; }
switch_stmt(A) ::= T_SWITCH(B) T_LPAREN exp(C) T_RPAREN T_LBRACE switch_cases(D) T_RBRACE.
{ A = wrap_op(B, C, D); }
switch_stmt(A) ::= T_SWITCH T_LPAREN exp(B) T_RPAREN empty_object.
{ A = B; }
switch_cases(A) ::= switch_cases(B) switch_case(C). { A = append_op(B, C); }
switch_cases(A) ::= switch_case(B). { A = B; }
switch_case(A) ::= T_CASE(B) exp(C) T_COLON stmts(D). { A = wrap_op(B, C, D); }
switch_case(A) ::= T_CASE(B) exp(C) T_COLON. { A = wrap_op(B, C); }
switch_case(A) ::= T_DEFAULT(B) T_COLON stmts(C). { A = wrap_op(B, C); }
args(A) ::= sargs(B) T_COMMA T_ELLIP T_LABEL(C). { A = append_op(B, C); ut_get_op(s, C)->is_ellip = 1; }
args(A) ::= T_ELLIP T_LABEL(B). { A = B; ut_get_op(s, B)->is_ellip = 1; }
args(A) ::= sargs(B). { A = B; }
sargs(A) ::= sargs(B) T_COMMA T_LABEL(C). { A = append_op(B, C); }
sargs(A) ::= T_LABEL(B). { A = B; }
decl_or_exp(A) ::= exp_stmt(B). { A = B; }
decl_or_exp(A) ::= decl_stmt(B). { A = B; }
ret_stmt(A) ::= T_RETURN(B) exp(C) T_SCOL. { A = wrap_op(B, C); }
ret_stmt(A) ::= T_RETURN(B) T_SCOL. { A = B; }
break_stmt(A) ::= T_BREAK(B) T_SCOL. { A = B; }
break_stmt(A) ::= T_CONTINUE(B) T_SCOL. { A = B; }
decl_stmt(A) ::= T_LOCAL(B) decls(C) T_SCOL. { A = wrap_op(B, ut_check_op_seq_types(s, C, T_ASSIGN, T_LABEL)); }
decls(A) ::= decls(B) T_COMMA decl(C). { A = append_op(B, C); }
decls(A) ::= decl(B). { A = B; }
decl(A) ::= T_LABEL(B) T_ASSIGN(C) arrow_exp(D). { A = wrap_op(C, B, D); }
decl(A) ::= T_LABEL(B) T_IN(C) arrow_exp(D). { A = wrap_op(C, B, D); }
decl(A) ::= T_LABEL(B). { A = B; }
arrowfn_body(A) ::= cpd_stmt(B). { A = B; }
arrowfn_body(A) ::= assign_exp(B). { A = no_empty_obj(B); }
exp(A) ::= exp(B) T_COMMA assign_exp(C). { A = append_op(B, C); }
exp(A) ::= assign_exp(B). { A = B; }
assign_exp(A) ::= unary_exp(B) T_ASSIGN(C) arrow_exp(D).
{ A = wrap_op(C, B, D); }
assign_exp(A) ::= unary_exp(B) T_ASADD arrow_exp(C). { A = new_op(T_ADD, NULL, B, C); A = new_op(T_ASSIGN, NULL, B, A); }
assign_exp(A) ::= unary_exp(B) T_ASSUB arrow_exp(C). { A = new_op(T_SUB, NULL, B, C); A = new_op(T_ASSIGN, NULL, B, A); }
assign_exp(A) ::= unary_exp(B) T_ASMUL arrow_exp(C). { A = new_op(T_MUL, NULL, B, C); A = new_op(T_ASSIGN, NULL, B, A); }
assign_exp(A) ::= unary_exp(B) T_ASDIV arrow_exp(C). { A = new_op(T_DIV, NULL, B, C); A = new_op(T_ASSIGN, NULL, B, A); }
assign_exp(A) ::= unary_exp(B) T_ASMOD arrow_exp(C). { A = new_op(T_MOD, NULL, B, C); A = new_op(T_ASSIGN, NULL, B, A); }
assign_exp(A) ::= unary_exp(B) T_ASLEFT arrow_exp(C). { A = new_op(T_LSHIFT, NULL, B, C); A = new_op(T_ASSIGN, NULL, B, A); }
assign_exp(A) ::= unary_exp(B) T_ASRIGHT arrow_exp(C).
{ A = new_op(T_RSHIFT, NULL, B, C); A = new_op(T_ASSIGN, NULL, B, A); }
assign_exp(A) ::= unary_exp(B) T_ASBAND arrow_exp(C). { A = new_op(T_BAND, NULL, B, C); A = new_op(T_ASSIGN, NULL, B, A); }
assign_exp(A) ::= unary_exp(B) T_ASBXOR arrow_exp(C). { A = new_op(T_BXOR, NULL, B, C); A = new_op(T_ASSIGN, NULL, B, A); }
assign_exp(A) ::= unary_exp(B) T_ASBOR arrow_exp(C). { A = new_op(T_BOR, NULL, B, C); A = new_op(T_ASSIGN, NULL, B, A); }
assign_exp(A) ::= arrow_exp(B). { A = B; }
arrow_exp(A) ::= unary_exp(B) T_ARROW(C) arrowfn_body(D).
{ A = wrap_op(C, 0, ut_check_op_seq_types(s, B, T_LABEL), D); }
arrow_exp(A) ::= T_LPAREN T_RPAREN T_ARROW(C) arrowfn_body(D).
{ A = wrap_op(C, 0, 0, D); }
arrow_exp(A) ::= T_LPAREN T_ELLIP T_LABEL(B) T_RPAREN T_ARROW(C) arrowfn_body(D).
{ A = wrap_op(C, 0, B, D); ut_get_op(s, B)->is_ellip = 1; }
arrow_exp(A) ::= T_LPAREN exp(B) T_COMMA T_ELLIP T_LABEL(C) T_RPAREN T_ARROW(D) arrowfn_body(E).
{ A = append_op(B, C); A = wrap_op(D, 0, ut_check_op_seq_types(s, A, T_LABEL), E); ut_get_op(s, C)->is_ellip = 1; }
arrow_exp(A) ::= ternary_exp(B). { A = B; }
ternary_exp(A) ::= or_exp(B) T_QMARK(C) assign_exp(D) T_COLON ternary_exp(E).
{ A = wrap_op(C, B, D, E); }
ternary_exp(A) ::= or_exp(B). { A = B; }
or_exp(A) ::= or_exp(B) T_OR(C) and_exp(D). { A = wrap_op(C, B, D); }
or_exp(A) ::= and_exp(B). { A = B; }
and_exp(A) ::= and_exp(B) T_AND(C) bor_exp(D). { A = wrap_op(C, B, D); }
and_exp(A) ::= bor_exp(B). { A = B; }
bor_exp(A) ::= bor_exp(B) T_BOR(C) bxor_exp(D). { A = wrap_op(C, B, D); }
bor_exp(A) ::= bxor_exp(B). { A = B; }
bxor_exp(A) ::= bxor_exp(B) T_BXOR(C) band_exp(D). { A = wrap_op(C, B, D); }
bxor_exp(A) ::= band_exp(B). { A = B; }
band_exp(A) ::= band_exp(B) T_BAND(C) equal_exp(D). { A = wrap_op(C, B, D); }
band_exp(A) ::= equal_exp(B). { A = B; }
equal_exp(A) ::= equal_exp(B) T_EQ(C) rel_exp(D). { A = wrap_op(C, B, D); }
equal_exp(A) ::= equal_exp(B) T_NE(C) rel_exp(D). { A = wrap_op(C, B, D); }
equal_exp(A) ::= equal_exp(B) T_EQS(C) rel_exp(D). { A = wrap_op(C, B, D); }
equal_exp(A) ::= equal_exp(B) T_NES(C) rel_exp(D). { A = wrap_op(C, B, D); }
equal_exp(A) ::= rel_exp(B). { A = B; }
rel_exp(A) ::= rel_exp(B) T_LT(C) shift_exp(D). { A = wrap_op(C, B, D); }
rel_exp(A) ::= rel_exp(B) T_LE(C) shift_exp(D). { A = wrap_op(C, B, D); }
rel_exp(A) ::= rel_exp(B) T_GT(C) shift_exp(D). { A = wrap_op(C, B, D); }
rel_exp(A) ::= rel_exp(B) T_GE(C) shift_exp(D). { A = wrap_op(C, B, D); }
rel_exp(A) ::= rel_exp(B) T_IN(C) shift_exp(D). { A = wrap_op(C, B, D); }
rel_exp(A) ::= shift_exp(B). { A = B; }
shift_exp(A) ::= shift_exp(B) T_LSHIFT(C) add_exp(D). { A = wrap_op(C, B, D); }
shift_exp(A) ::= shift_exp(B) T_RSHIFT(C) add_exp(D). { A = wrap_op(C, B, D); }
shift_exp(A) ::= add_exp(B). { A = B; }
add_exp(A) ::= add_exp(B) T_ADD(C) mul_exp(D). { A = wrap_op(C, B, D); }
add_exp(A) ::= add_exp(B) T_SUB(C) mul_exp(D). { A = wrap_op(C, B, D); }
add_exp(A) ::= mul_exp(B). { A = B; }
mul_exp(A) ::= mul_exp(B) T_MUL(C) unary_exp(D). { A = wrap_op(C, B, D); }
mul_exp(A) ::= mul_exp(B) T_DIV(C) unary_exp(D). { A = wrap_op(C, B, D); }
mul_exp(A) ::= mul_exp(B) T_MOD(C) unary_exp(D). { A = wrap_op(C, B, D); }
mul_exp(A) ::= unary_exp(B). { A = B; }
unary_exp(A) ::= T_INC(B) unary_exp(C). [T_LPAREN] { A = wrap_op(B, C); }
unary_exp(A) ::= T_DEC(B) unary_exp(C). [T_LPAREN] { A = wrap_op(B, C); }
unary_exp(A) ::= T_ADD(B) unary_exp(C). [T_NOT] { A = wrap_op(B, C); }
unary_exp(A) ::= T_SUB(B) unary_exp(C). [T_NOT] { A = wrap_op(B, C); }
unary_exp(A) ::= T_COMPL(B) unary_exp(C). { A = wrap_op(B, C); }
unary_exp(A) ::= T_NOT(B) unary_exp(C). { A = wrap_op(B, C); }
unary_exp(A) ::= postfix_exp(B). { A = B; }
postfix_exp(A) ::= unary_exp(B) T_INC(C). { A = wrap_op(C, B); ut_get_op(s, A)->is_postfix = 1; }
postfix_exp(A) ::= unary_exp(B) T_DEC(C). { A = wrap_op(C, B); ut_get_op(s, A)->is_postfix = 1; }
postfix_exp(A) ::= unary_exp(B) T_LPAREN(C) T_RPAREN. { A = wrap_op(C, B); }
postfix_exp(A) ::= unary_exp(B) T_LPAREN(C) arg_exps(D) T_RPAREN.
{ A = wrap_op(C, B, D); }
postfix_exp(A) ::= postfix_exp(B) T_DOT(C) T_LABEL(D). { A = wrap_op(C, B, D); }
postfix_exp(A) ::= postfix_exp(B) T_LBRACK(C) exp(D) T_RBRACK.
{ A = wrap_op(C, B, D); ut_get_op(s, A)->is_postfix = 1; }
postfix_exp(A) ::= primary_exp(B). { A = B; }
primary_exp(A) ::= T_BOOL(B). { A = B; }
primary_exp(A) ::= T_NUMBER(B). { A = B; }
primary_exp(A) ::= T_DOUBLE(B). { A = B; }
primary_exp(A) ::= T_STRING(B). { A = B; }
primary_exp(A) ::= T_LABEL(B). { A = B; }
primary_exp(A) ::= T_REGEXP(B). { A = B; }
primary_exp(A) ::= T_NULL(B). { A = B; }
primary_exp(A) ::= T_THIS(B). { A = B; }
primary_exp(A) ::= array(B). { A = B; }
primary_exp(A) ::= object(B). { A = B; }
primary_exp(A) ::= paren_exp(B). { A = ut_reject_local(s, B); }
primary_exp(A) ::= T_FUNC(B) T_LPAREN T_RPAREN empty_object.
{ A = B; }
primary_exp(A) ::= T_FUNC(B) T_LPAREN args(C) T_RPAREN empty_object.
{ A = wrap_op(B, 0, C, 0); }
primary_exp(A) ::= T_FUNC(B) T_LPAREN T_RPAREN cpd_stmt(C).
{ A = wrap_op(B, 0, 0, C); }
primary_exp(A) ::= T_FUNC(B) T_LPAREN args(C) T_RPAREN cpd_stmt(D).
{ A = wrap_op(B, 0, C, D); }
paren_exp(A) ::= T_LPAREN exp(B) T_RPAREN. { A = B; }
paren_exp(A) ::= T_LPAREN T_LOCAL(B) decls(C) T_RPAREN. { A = wrap_op(B, C); }
array(A) ::= T_LBRACK(B) T_RBRACK. { A = B; }
array(A) ::= T_LBRACK(B) items(C) T_RBRACK. { A = wrap_op(B, C); }
items(A) ::= items(B) T_COMMA item(C). { A = append_op(B, C); }
items(A) ::= item(B). { A = B; }
item(A) ::= T_ELLIP assign_exp(B). { A = ut_get_op(s, B)->tree.next ? new_op(T_COMMA, NULL, B) : B; ut_get_op(s, A)->is_ellip = 1; }
item(A) ::= assign_exp(B). { A = ut_get_op(s, B)->tree.next ? new_op(T_COMMA, NULL, B) : B; }
object(A) ::= empty_object(B). { A = B; }
object(A) ::= T_LBRACE(B) tuples(C) T_RBRACE. { A = wrap_op(B, C); }
empty_object(A) ::= T_LBRACE(B) T_RBRACE. { A = B; }
tuples(A) ::= tuples(B) T_COMMA tuple(C). { A = append_op(B, C); }
tuples(A) ::= tuple(B). { A = B; }
tuple(A) ::= T_LABEL(B) T_COLON exp(C). { A = wrap_op(B, C); }
tuple(A) ::= T_STRING(B) T_COLON exp(C). { A = wrap_op(B, C); }
tuple(A) ::= T_ELLIP(B) assign_exp(C). { A = wrap_op(B, C); }
arg_exps(A) ::= arg_exps(B) T_COMMA arg_exp(C). { A = append_op(B, C); ut_get_op(s, A)->is_list = 1; }
arg_exps(A) ::= arg_exp(B). { A = B; ut_get_op(s, A)->is_list = 1; }
arg_exp(A) ::= T_ELLIP assign_exp(B). { A = ut_get_op(s, B)->tree.next ? new_op(T_COMMA, NULL, B) : B; ut_get_op(s, A)->is_ellip = 1; }
arg_exp(A) ::= assign_exp(B). { A = ut_get_op(s, B)->tree.next ? new_op(T_COMMA, NULL, B) : B; }
|