1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "test/syscalls/linux/socket_ip_tcp_generic.h"
#include <netinet/in.h>
#include <netinet/tcp.h>
#include <poll.h>
#include <stdio.h>
#include <sys/ioctl.h>
#include <sys/socket.h>
#include <sys/types.h>
#include <sys/un.h>
#include "gtest/gtest.h"
#include "absl/memory/memory.h"
#include "absl/time/clock.h"
#include "absl/time/time.h"
#include "test/syscalls/linux/socket_test_util.h"
#include "test/util/test_util.h"
#include "test/util/thread_util.h"
namespace gvisor {
namespace testing {
TEST_P(TCPSocketPairTest, TcpInfoSucceeds) {
auto sockets = ASSERT_NO_ERRNO_AND_VALUE(NewSocketPair());
struct tcp_info opt = {};
socklen_t optLen = sizeof(opt);
EXPECT_THAT(getsockopt(sockets->first_fd(), SOL_TCP, TCP_INFO, &opt, &optLen),
SyscallSucceeds());
}
TEST_P(TCPSocketPairTest, ShortTcpInfoSucceeds) {
auto sockets = ASSERT_NO_ERRNO_AND_VALUE(NewSocketPair());
struct tcp_info opt = {};
socklen_t optLen = 1;
EXPECT_THAT(getsockopt(sockets->first_fd(), SOL_TCP, TCP_INFO, &opt, &optLen),
SyscallSucceeds());
}
TEST_P(TCPSocketPairTest, ZeroTcpInfoSucceeds) {
auto sockets = ASSERT_NO_ERRNO_AND_VALUE(NewSocketPair());
struct tcp_info opt = {};
socklen_t optLen = 0;
EXPECT_THAT(getsockopt(sockets->first_fd(), SOL_TCP, TCP_INFO, &opt, &optLen),
SyscallSucceeds());
}
// This test validates that an RST is sent instead of a FIN when data is
// unread on calls to close(2).
TEST_P(TCPSocketPairTest, RSTSentOnCloseWithUnreadData) {
auto sockets = ASSERT_NO_ERRNO_AND_VALUE(NewSocketPair());
char buf[10] = {};
ASSERT_THAT(RetryEINTR(write)(sockets->first_fd(), buf, sizeof(buf)),
SyscallSucceedsWithValue(sizeof(buf)));
// Wait until t_ sees the data on its side but don't read it.
struct pollfd poll_fd = {sockets->second_fd(), POLLIN | POLLHUP, 0};
constexpr int kPollTimeoutMs = 20000; // Wait up to 20 seconds for the data.
ASSERT_THAT(RetryEINTR(poll)(&poll_fd, 1, kPollTimeoutMs),
SyscallSucceedsWithValue(1));
// Now close the connected without reading the data.
ASSERT_THAT(close(sockets->release_second_fd()), SyscallSucceeds());
// Wait for the other end to receive the RST (up to 20 seconds).
struct pollfd poll_fd2 = {sockets->first_fd(), POLLIN | POLLHUP, 0};
ASSERT_THAT(RetryEINTR(poll)(&poll_fd2, 1, kPollTimeoutMs),
SyscallSucceedsWithValue(1));
// A shutdown with unread data will cause a RST to be sent instead
// of a FIN, per RFC 2525 section 2.17; this is also what Linux does.
ASSERT_THAT(RetryEINTR(read)(sockets->first_fd(), buf, sizeof(buf)),
SyscallFailsWithErrno(ECONNRESET));
}
// This test will validate that a RST will cause POLLHUP to trigger.
TEST_P(TCPSocketPairTest, RSTCausesPollHUP) {
auto sockets = ASSERT_NO_ERRNO_AND_VALUE(NewSocketPair());
char buf[10] = {};
ASSERT_THAT(RetryEINTR(write)(sockets->first_fd(), buf, sizeof(buf)),
SyscallSucceedsWithValue(sizeof(buf)));
// Wait until second sees the data on its side but don't read it.
struct pollfd poll_fd = {sockets->second_fd(), POLLIN, 0};
constexpr int kPollTimeoutMs = 20000; // Wait up to 20 seconds for the data.
ASSERT_THAT(RetryEINTR(poll)(&poll_fd, 1, kPollTimeoutMs),
SyscallSucceedsWithValue(1));
EXPECT_EQ(poll_fd.revents & POLLIN, POLLIN);
// Confirm we at least have one unread byte.
int bytes_available = 0;
ASSERT_THAT(
RetryEINTR(ioctl)(sockets->second_fd(), FIONREAD, &bytes_available),
SyscallSucceeds());
EXPECT_GT(bytes_available, 0);
// Now close the connected socket without reading the data from the second,
// this will cause a RST and we should see that with POLLHUP.
ASSERT_THAT(close(sockets->release_second_fd()), SyscallSucceeds());
// Wait for the other end to receive the RST (up to 20 seconds).
struct pollfd poll_fd3 = {sockets->first_fd(), POLLHUP, 0};
ASSERT_THAT(RetryEINTR(poll)(&poll_fd3, 1, kPollTimeoutMs),
SyscallSucceedsWithValue(1));
ASSERT_NE(poll_fd3.revents & POLLHUP, 0);
}
// This test validates that even if a RST is sent the other end will not
// get an ECONNRESET until it's read all data.
TEST_P(TCPSocketPairTest, RSTSentOnCloseWithUnreadDataAllowsReadBuffered) {
auto sockets = ASSERT_NO_ERRNO_AND_VALUE(NewSocketPair());
char buf[10] = {};
ASSERT_THAT(RetryEINTR(write)(sockets->first_fd(), buf, sizeof(buf)),
SyscallSucceedsWithValue(sizeof(buf)));
ASSERT_THAT(RetryEINTR(write)(sockets->second_fd(), buf, sizeof(buf)),
SyscallSucceedsWithValue(sizeof(buf)));
// Wait until second sees the data on its side but don't read it.
struct pollfd poll_fd = {sockets->second_fd(), POLLIN, 0};
constexpr int kPollTimeoutMs = 30000; // Wait up to 30 seconds for the data.
ASSERT_THAT(RetryEINTR(poll)(&poll_fd, 1, kPollTimeoutMs),
SyscallSucceedsWithValue(1));
// Wait until first sees the data on its side but don't read it.
struct pollfd poll_fd2 = {sockets->first_fd(), POLLIN, 0};
ASSERT_THAT(RetryEINTR(poll)(&poll_fd2, 1, kPollTimeoutMs),
SyscallSucceedsWithValue(1));
// Now close the connected socket without reading the data from the second.
ASSERT_THAT(close(sockets->release_second_fd()), SyscallSucceeds());
// Wait for the other end to receive the RST (up to 30 seconds).
struct pollfd poll_fd3 = {sockets->first_fd(), POLLHUP, 0};
ASSERT_THAT(RetryEINTR(poll)(&poll_fd3, 1, kPollTimeoutMs),
SyscallSucceedsWithValue(1));
// Since we also have data buffered we should be able to read it before
// the syscall will fail with ECONNRESET.
ASSERT_THAT(RetryEINTR(read)(sockets->first_fd(), buf, sizeof(buf)),
SyscallSucceedsWithValue(sizeof(buf)));
// A shutdown with unread data will cause a RST to be sent instead
// of a FIN, per RFC 2525 section 2.17; this is also what Linux does.
ASSERT_THAT(RetryEINTR(read)(sockets->first_fd(), buf, sizeof(buf)),
SyscallFailsWithErrno(ECONNRESET));
}
// This test will verify that a clean shutdown (FIN) is preformed when there
// is unread data but only the write side is closed.
TEST_P(TCPSocketPairTest, FINSentOnShutdownWrWithUnreadData) {
auto sockets = ASSERT_NO_ERRNO_AND_VALUE(NewSocketPair());
char buf[10] = {};
ASSERT_THAT(RetryEINTR(write)(sockets->first_fd(), buf, sizeof(buf)),
SyscallSucceedsWithValue(sizeof(buf)));
// Wait until t_ sees the data on its side but don't read it.
struct pollfd poll_fd = {sockets->second_fd(), POLLIN | POLLHUP, 0};
constexpr int kPollTimeoutMs = 20000; // Wait up to 20 seconds for the data.
ASSERT_THAT(RetryEINTR(poll)(&poll_fd, 1, kPollTimeoutMs),
SyscallSucceedsWithValue(1));
// Now shutdown the write end leaving the read end open.
ASSERT_THAT(shutdown(sockets->second_fd(), SHUT_WR), SyscallSucceeds());
// Wait for the other end to receive the FIN (up to 20 seconds).
struct pollfd poll_fd2 = {sockets->first_fd(), POLLIN | POLLHUP, 0};
ASSERT_THAT(RetryEINTR(poll)(&poll_fd2, 1, kPollTimeoutMs),
SyscallSucceedsWithValue(1));
// Since we didn't shutdown the read end this will be a clean close.
ASSERT_THAT(RetryEINTR(read)(sockets->first_fd(), buf, sizeof(buf)),
SyscallSucceedsWithValue(0));
}
// This test will verify that when data is received by a socket, even if it's
// not read SHUT_RD will not cause any packets to be generated.
TEST_P(TCPSocketPairTest, ShutdownRdShouldCauseNoPacketsWithUnreadData) {
auto sockets = ASSERT_NO_ERRNO_AND_VALUE(NewSocketPair());
char buf[10] = {};
ASSERT_THAT(RetryEINTR(write)(sockets->first_fd(), buf, sizeof(buf)),
SyscallSucceedsWithValue(sizeof(buf)));
// Wait until t_ sees the data on its side but don't read it.
struct pollfd poll_fd = {sockets->second_fd(), POLLIN | POLLHUP, 0};
constexpr int kPollTimeoutMs = 20000; // Wait up to 20 seconds for the data.
ASSERT_THAT(RetryEINTR(poll)(&poll_fd, 1, kPollTimeoutMs),
SyscallSucceedsWithValue(1));
// Now shutdown the read end, this will generate no packets to the other end.
ASSERT_THAT(shutdown(sockets->second_fd(), SHUT_RD), SyscallSucceeds());
// We should not receive any events on the other side of the socket.
struct pollfd poll_fd2 = {sockets->first_fd(), POLLIN | POLLHUP, 0};
constexpr int kPollNoResponseTimeoutMs = 3000;
ASSERT_THAT(RetryEINTR(poll)(&poll_fd2, 1, kPollNoResponseTimeoutMs),
SyscallSucceedsWithValue(0)); // Timeout.
}
// This test will verify that a socket which has unread data will still allow
// the data to be read after shutting down the read side, and once there is no
// unread data left, then read will return an EOF.
TEST_P(TCPSocketPairTest, ShutdownRdAllowsReadOfReceivedDataBeforeEOF) {
auto sockets = ASSERT_NO_ERRNO_AND_VALUE(NewSocketPair());
char buf[10] = {};
ASSERT_THAT(RetryEINTR(write)(sockets->first_fd(), buf, sizeof(buf)),
SyscallSucceedsWithValue(sizeof(buf)));
// Wait until t_ sees the data on its side but don't read it.
struct pollfd poll_fd = {sockets->second_fd(), POLLIN | POLLHUP, 0};
constexpr int kPollTimeoutMs = 20000; // Wait up to 20 seconds for the data.
ASSERT_THAT(RetryEINTR(poll)(&poll_fd, 1, kPollTimeoutMs),
SyscallSucceedsWithValue(1));
// Now shutdown the read end.
ASSERT_THAT(shutdown(sockets->second_fd(), SHUT_RD), SyscallSucceeds());
// Even though we did a SHUT_RD on the read end we can still read the data.
ASSERT_THAT(RetryEINTR(read)(sockets->second_fd(), buf, sizeof(buf)),
SyscallSucceedsWithValue(sizeof(buf)));
// After reading all of the data, reading the closed read end returns EOF.
ASSERT_THAT(RetryEINTR(poll)(&poll_fd, 1, kPollTimeoutMs),
SyscallSucceedsWithValue(1));
ASSERT_THAT(RetryEINTR(read)(sockets->second_fd(), buf, sizeof(buf)),
SyscallSucceedsWithValue(0));
}
// This test verifies that a shutdown(wr) by the server after sending
// data allows the client to still read() the queued data and a client
// close after sending response allows server to read the incoming
// response.
TEST_P(TCPSocketPairTest, ShutdownWrServerClientClose) {
auto sockets = ASSERT_NO_ERRNO_AND_VALUE(NewSocketPair());
char buf[10] = {};
ScopedThread t([&]() {
ASSERT_THAT(RetryEINTR(read)(sockets->first_fd(), buf, sizeof(buf)),
SyscallSucceedsWithValue(sizeof(buf)));
ASSERT_THAT(RetryEINTR(write)(sockets->first_fd(), buf, sizeof(buf)),
SyscallSucceedsWithValue(sizeof(buf)));
ASSERT_THAT(close(sockets->release_first_fd()),
SyscallSucceedsWithValue(0));
});
ASSERT_THAT(RetryEINTR(write)(sockets->second_fd(), buf, sizeof(buf)),
SyscallSucceedsWithValue(sizeof(buf)));
ASSERT_THAT(RetryEINTR(shutdown)(sockets->second_fd(), SHUT_WR),
SyscallSucceedsWithValue(0));
t.Join();
ASSERT_THAT(RetryEINTR(read)(sockets->second_fd(), buf, sizeof(buf)),
SyscallSucceedsWithValue(sizeof(buf)));
}
TEST_P(TCPSocketPairTest, ClosedReadNonBlockingSocket) {
auto sockets = ASSERT_NO_ERRNO_AND_VALUE(NewSocketPair());
// Set the read end to O_NONBLOCK.
int opts = 0;
ASSERT_THAT(opts = fcntl(sockets->second_fd(), F_GETFL), SyscallSucceeds());
ASSERT_THAT(fcntl(sockets->second_fd(), F_SETFL, opts | O_NONBLOCK),
SyscallSucceeds());
char buf[10] = {};
ASSERT_THAT(RetryEINTR(send)(sockets->first_fd(), buf, sizeof(buf), 0),
SyscallSucceedsWithValue(sizeof(buf)));
// Wait until second_fd sees the data and then recv it.
struct pollfd poll_fd = {sockets->second_fd(), POLLIN, 0};
constexpr int kPollTimeoutMs = 2000; // Wait up to 2 seconds for the data.
ASSERT_THAT(RetryEINTR(poll)(&poll_fd, 1, kPollTimeoutMs),
SyscallSucceedsWithValue(1));
ASSERT_THAT(RetryEINTR(recv)(sockets->second_fd(), buf, sizeof(buf), 0),
SyscallSucceedsWithValue(sizeof(buf)));
// Now shutdown the write end leaving the read end open.
ASSERT_THAT(close(sockets->release_first_fd()), SyscallSucceeds());
// Wait for close notification and recv again.
struct pollfd poll_fd2 = {sockets->second_fd(), POLLIN, 0};
ASSERT_THAT(RetryEINTR(poll)(&poll_fd2, 1, kPollTimeoutMs),
SyscallSucceedsWithValue(1));
ASSERT_THAT(RetryEINTR(recv)(sockets->second_fd(), buf, sizeof(buf), 0),
SyscallSucceedsWithValue(0));
}
TEST_P(TCPSocketPairTest,
ShutdownRdUnreadDataShouldCauseNoPacketsUnlessClosed) {
auto sockets = ASSERT_NO_ERRNO_AND_VALUE(NewSocketPair());
char buf[10] = {};
ASSERT_THAT(RetryEINTR(write)(sockets->first_fd(), buf, sizeof(buf)),
SyscallSucceedsWithValue(sizeof(buf)));
// Wait until t_ sees the data on its side but don't read it.
struct pollfd poll_fd = {sockets->second_fd(), POLLIN | POLLHUP, 0};
constexpr int kPollTimeoutMs = 20000; // Wait up to 20 seconds for the data.
ASSERT_THAT(RetryEINTR(poll)(&poll_fd, 1, kPollTimeoutMs),
SyscallSucceedsWithValue(1));
// Now shutdown the read end, this will generate no packets to the other end.
ASSERT_THAT(shutdown(sockets->second_fd(), SHUT_RD), SyscallSucceeds());
// We should not receive any events on the other side of the socket.
struct pollfd poll_fd2 = {sockets->first_fd(), POLLIN | POLLHUP, 0};
constexpr int kPollNoResponseTimeoutMs = 3000;
ASSERT_THAT(RetryEINTR(poll)(&poll_fd2, 1, kPollNoResponseTimeoutMs),
SyscallSucceedsWithValue(0)); // Timeout.
// Now since we've fully closed the connection it will generate a RST.
ASSERT_THAT(close(sockets->release_second_fd()), SyscallSucceeds());
ASSERT_THAT(RetryEINTR(poll)(&poll_fd2, 1, kPollTimeoutMs),
SyscallSucceedsWithValue(1)); // The other end has closed.
// A shutdown with unread data will cause a RST to be sent instead
// of a FIN, per RFC 2525 section 2.17; this is also what Linux does.
ASSERT_THAT(RetryEINTR(read)(sockets->first_fd(), buf, sizeof(buf)),
SyscallFailsWithErrno(ECONNRESET));
}
TEST_P(TCPSocketPairTest, TCPCorkDefault) {
auto sockets = ASSERT_NO_ERRNO_AND_VALUE(NewSocketPair());
int get = -1;
socklen_t get_len = sizeof(get);
EXPECT_THAT(
getsockopt(sockets->first_fd(), IPPROTO_TCP, TCP_CORK, &get, &get_len),
SyscallSucceedsWithValue(0));
EXPECT_EQ(get_len, sizeof(get));
EXPECT_EQ(get, kSockOptOff);
}
TEST_P(TCPSocketPairTest, SetTCPCork) {
auto sockets = ASSERT_NO_ERRNO_AND_VALUE(NewSocketPair());
ASSERT_THAT(setsockopt(sockets->first_fd(), IPPROTO_TCP, TCP_CORK,
&kSockOptOn, sizeof(kSockOptOn)),
SyscallSucceeds());
int get = -1;
socklen_t get_len = sizeof(get);
EXPECT_THAT(
getsockopt(sockets->first_fd(), IPPROTO_TCP, TCP_CORK, &get, &get_len),
SyscallSucceedsWithValue(0));
EXPECT_EQ(get_len, sizeof(get));
EXPECT_EQ(get, kSockOptOn);
ASSERT_THAT(setsockopt(sockets->first_fd(), IPPROTO_TCP, TCP_CORK,
&kSockOptOff, sizeof(kSockOptOff)),
SyscallSucceeds());
EXPECT_THAT(
getsockopt(sockets->first_fd(), IPPROTO_TCP, TCP_CORK, &get, &get_len),
SyscallSucceedsWithValue(0));
EXPECT_EQ(get_len, sizeof(get));
EXPECT_EQ(get, kSockOptOff);
}
TEST_P(TCPSocketPairTest, TCPCork) {
auto sockets = ASSERT_NO_ERRNO_AND_VALUE(NewSocketPair());
EXPECT_THAT(setsockopt(sockets->first_fd(), IPPROTO_TCP, TCP_CORK,
&kSockOptOn, sizeof(kSockOptOn)),
SyscallSucceeds());
constexpr char kData[] = "abc";
ASSERT_THAT(WriteFd(sockets->first_fd(), kData, sizeof(kData)),
SyscallSucceedsWithValue(sizeof(kData)));
ASSERT_NO_FATAL_FAILURE(RecvNoData(sockets->second_fd()));
EXPECT_THAT(setsockopt(sockets->first_fd(), IPPROTO_TCP, TCP_CORK,
&kSockOptOff, sizeof(kSockOptOff)),
SyscallSucceeds());
// Create a receive buffer larger than kData.
char buf[(sizeof(kData) + 1) * 2] = {};
ASSERT_THAT(RetryEINTR(recv)(sockets->second_fd(), buf, sizeof(buf), 0),
SyscallSucceedsWithValue(sizeof(kData)));
EXPECT_EQ(absl::string_view(kData, sizeof(kData)),
absl::string_view(buf, sizeof(kData)));
}
TEST_P(TCPSocketPairTest, TCPQuickAckDefault) {
auto sockets = ASSERT_NO_ERRNO_AND_VALUE(NewSocketPair());
int get = -1;
socklen_t get_len = sizeof(get);
EXPECT_THAT(getsockopt(sockets->first_fd(), IPPROTO_TCP, TCP_QUICKACK, &get,
&get_len),
SyscallSucceedsWithValue(0));
EXPECT_EQ(get_len, sizeof(get));
EXPECT_EQ(get, kSockOptOn);
}
TEST_P(TCPSocketPairTest, SetTCPQuickAck) {
auto sockets = ASSERT_NO_ERRNO_AND_VALUE(NewSocketPair());
ASSERT_THAT(setsockopt(sockets->first_fd(), IPPROTO_TCP, TCP_QUICKACK,
&kSockOptOff, sizeof(kSockOptOff)),
SyscallSucceeds());
int get = -1;
socklen_t get_len = sizeof(get);
EXPECT_THAT(getsockopt(sockets->first_fd(), IPPROTO_TCP, TCP_QUICKACK, &get,
&get_len),
SyscallSucceedsWithValue(0));
EXPECT_EQ(get_len, sizeof(get));
EXPECT_EQ(get, kSockOptOff);
ASSERT_THAT(setsockopt(sockets->first_fd(), IPPROTO_TCP, TCP_QUICKACK,
&kSockOptOn, sizeof(kSockOptOn)),
SyscallSucceeds());
EXPECT_THAT(getsockopt(sockets->first_fd(), IPPROTO_TCP, TCP_QUICKACK, &get,
&get_len),
SyscallSucceedsWithValue(0));
EXPECT_EQ(get_len, sizeof(get));
EXPECT_EQ(get, kSockOptOn);
}
TEST_P(TCPSocketPairTest, SoKeepaliveDefault) {
auto sockets = ASSERT_NO_ERRNO_AND_VALUE(NewSocketPair());
int get = -1;
socklen_t get_len = sizeof(get);
EXPECT_THAT(
getsockopt(sockets->first_fd(), SOL_SOCKET, SO_KEEPALIVE, &get, &get_len),
SyscallSucceedsWithValue(0));
EXPECT_EQ(get_len, sizeof(get));
EXPECT_EQ(get, kSockOptOff);
}
TEST_P(TCPSocketPairTest, SetSoKeepalive) {
auto sockets = ASSERT_NO_ERRNO_AND_VALUE(NewSocketPair());
ASSERT_THAT(setsockopt(sockets->first_fd(), SOL_SOCKET, SO_KEEPALIVE,
&kSockOptOn, sizeof(kSockOptOn)),
SyscallSucceeds());
int get = -1;
socklen_t get_len = sizeof(get);
EXPECT_THAT(
getsockopt(sockets->first_fd(), SOL_SOCKET, SO_KEEPALIVE, &get, &get_len),
SyscallSucceedsWithValue(0));
EXPECT_EQ(get_len, sizeof(get));
EXPECT_EQ(get, kSockOptOn);
ASSERT_THAT(setsockopt(sockets->first_fd(), SOL_SOCKET, SO_KEEPALIVE,
&kSockOptOff, sizeof(kSockOptOff)),
SyscallSucceeds());
EXPECT_THAT(
getsockopt(sockets->first_fd(), SOL_SOCKET, SO_KEEPALIVE, &get, &get_len),
SyscallSucceedsWithValue(0));
EXPECT_EQ(get_len, sizeof(get));
EXPECT_EQ(get, kSockOptOff);
}
TEST_P(TCPSocketPairTest, TCPKeepidleDefault) {
auto sockets = ASSERT_NO_ERRNO_AND_VALUE(NewSocketPair());
int get = -1;
socklen_t get_len = sizeof(get);
EXPECT_THAT(getsockopt(sockets->first_fd(), IPPROTO_TCP, TCP_KEEPIDLE, &get,
&get_len),
SyscallSucceedsWithValue(0));
EXPECT_EQ(get_len, sizeof(get));
EXPECT_EQ(get, 2 * 60 * 60); // 2 hours.
}
TEST_P(TCPSocketPairTest, TCPKeepintvlDefault) {
auto sockets = ASSERT_NO_ERRNO_AND_VALUE(NewSocketPair());
int get = -1;
socklen_t get_len = sizeof(get);
EXPECT_THAT(getsockopt(sockets->first_fd(), IPPROTO_TCP, TCP_KEEPINTVL, &get,
&get_len),
SyscallSucceedsWithValue(0));
EXPECT_EQ(get_len, sizeof(get));
EXPECT_EQ(get, 75); // 75 seconds.
}
TEST_P(TCPSocketPairTest, SetTCPKeepidleZero) {
auto sockets = ASSERT_NO_ERRNO_AND_VALUE(NewSocketPair());
constexpr int kZero = 0;
EXPECT_THAT(setsockopt(sockets->first_fd(), IPPROTO_TCP, TCP_KEEPIDLE, &kZero,
sizeof(kZero)),
SyscallFailsWithErrno(EINVAL));
}
TEST_P(TCPSocketPairTest, SetTCPKeepintvlZero) {
auto sockets = ASSERT_NO_ERRNO_AND_VALUE(NewSocketPair());
constexpr int kZero = 0;
EXPECT_THAT(setsockopt(sockets->first_fd(), IPPROTO_TCP, TCP_KEEPINTVL,
&kZero, sizeof(kZero)),
SyscallFailsWithErrno(EINVAL));
}
// Copied from include/net/tcp.h.
constexpr int MAX_TCP_KEEPIDLE = 32767;
constexpr int MAX_TCP_KEEPINTVL = 32767;
TEST_P(TCPSocketPairTest, SetTCPKeepidleAboveMax) {
auto sockets = ASSERT_NO_ERRNO_AND_VALUE(NewSocketPair());
constexpr int kAboveMax = MAX_TCP_KEEPIDLE + 1;
EXPECT_THAT(setsockopt(sockets->first_fd(), IPPROTO_TCP, TCP_KEEPIDLE,
&kAboveMax, sizeof(kAboveMax)),
SyscallFailsWithErrno(EINVAL));
}
TEST_P(TCPSocketPairTest, SetTCPKeepintvlAboveMax) {
auto sockets = ASSERT_NO_ERRNO_AND_VALUE(NewSocketPair());
constexpr int kAboveMax = MAX_TCP_KEEPINTVL + 1;
EXPECT_THAT(setsockopt(sockets->first_fd(), IPPROTO_TCP, TCP_KEEPINTVL,
&kAboveMax, sizeof(kAboveMax)),
SyscallFailsWithErrno(EINVAL));
}
TEST_P(TCPSocketPairTest, SetTCPKeepidleToMax) {
auto sockets = ASSERT_NO_ERRNO_AND_VALUE(NewSocketPair());
EXPECT_THAT(setsockopt(sockets->first_fd(), IPPROTO_TCP, TCP_KEEPIDLE,
&MAX_TCP_KEEPIDLE, sizeof(MAX_TCP_KEEPIDLE)),
SyscallSucceedsWithValue(0));
int get = -1;
socklen_t get_len = sizeof(get);
EXPECT_THAT(getsockopt(sockets->first_fd(), IPPROTO_TCP, TCP_KEEPIDLE, &get,
&get_len),
SyscallSucceedsWithValue(0));
EXPECT_EQ(get_len, sizeof(get));
EXPECT_EQ(get, MAX_TCP_KEEPIDLE);
}
TEST_P(TCPSocketPairTest, SetTCPKeepintvlToMax) {
auto sockets = ASSERT_NO_ERRNO_AND_VALUE(NewSocketPair());
EXPECT_THAT(setsockopt(sockets->first_fd(), IPPROTO_TCP, TCP_KEEPINTVL,
&MAX_TCP_KEEPINTVL, sizeof(MAX_TCP_KEEPINTVL)),
SyscallSucceedsWithValue(0));
int get = -1;
socklen_t get_len = sizeof(get);
EXPECT_THAT(getsockopt(sockets->first_fd(), IPPROTO_TCP, TCP_KEEPINTVL, &get,
&get_len),
SyscallSucceedsWithValue(0));
EXPECT_EQ(get_len, sizeof(get));
EXPECT_EQ(get, MAX_TCP_KEEPINTVL);
}
TEST_P(TCPSocketPairTest, SetOOBInline) {
auto sockets = ASSERT_NO_ERRNO_AND_VALUE(NewSocketPair());
EXPECT_THAT(setsockopt(sockets->first_fd(), SOL_SOCKET, SO_OOBINLINE,
&kSockOptOn, sizeof(kSockOptOn)),
SyscallSucceeds());
int get = -1;
socklen_t get_len = sizeof(get);
EXPECT_THAT(
getsockopt(sockets->first_fd(), SOL_SOCKET, SO_OOBINLINE, &get, &get_len),
SyscallSucceedsWithValue(0));
EXPECT_EQ(get_len, sizeof(get));
EXPECT_EQ(get, kSockOptOn);
}
TEST_P(TCPSocketPairTest, MsgTruncMsgPeek) {
auto sockets = ASSERT_NO_ERRNO_AND_VALUE(NewSocketPair());
char sent_data[512];
RandomizeBuffer(sent_data, sizeof(sent_data));
ASSERT_THAT(
RetryEINTR(send)(sockets->first_fd(), sent_data, sizeof(sent_data), 0),
SyscallSucceedsWithValue(sizeof(sent_data)));
// Read half of the data with MSG_TRUNC | MSG_PEEK. This way there will still
// be some data left to read in the next step even if the data gets consumed.
char received_data1[sizeof(sent_data) / 2] = {};
ASSERT_THAT(RetryEINTR(recv)(sockets->second_fd(), received_data1,
sizeof(received_data1), MSG_TRUNC | MSG_PEEK),
SyscallSucceedsWithValue(sizeof(received_data1)));
// Check that we didn't get anything.
char zeros[sizeof(received_data1)] = {};
EXPECT_EQ(0, memcmp(zeros, received_data1, sizeof(received_data1)));
// Check that all of the data is still there.
char received_data2[sizeof(sent_data)] = {};
ASSERT_THAT(RetryEINTR(recv)(sockets->second_fd(), received_data2,
sizeof(received_data2), 0),
SyscallSucceedsWithValue(sizeof(sent_data)));
EXPECT_EQ(0, memcmp(received_data2, sent_data, sizeof(sent_data)));
}
TEST_P(TCPSocketPairTest, SetCongestionControlSucceedsForSupported) {
// This is Linux's net/tcp.h TCP_CA_NAME_MAX.
const int kTcpCaNameMax = 16;
auto sockets = ASSERT_NO_ERRNO_AND_VALUE(NewSocketPair());
// Netstack only supports reno & cubic so we only test these two values here.
{
const char kSetCC[kTcpCaNameMax] = "reno";
ASSERT_THAT(setsockopt(sockets->first_fd(), IPPROTO_TCP, TCP_CONGESTION,
&kSetCC, strlen(kSetCC)),
SyscallSucceedsWithValue(0));
char got_cc[kTcpCaNameMax];
memset(got_cc, '1', sizeof(got_cc));
socklen_t optlen = sizeof(got_cc);
ASSERT_THAT(getsockopt(sockets->first_fd(), IPPROTO_TCP, TCP_CONGESTION,
&got_cc, &optlen),
SyscallSucceedsWithValue(0));
EXPECT_EQ(0, memcmp(got_cc, kSetCC, sizeof(kSetCC)));
}
{
const char kSetCC[kTcpCaNameMax] = "cubic";
ASSERT_THAT(setsockopt(sockets->first_fd(), IPPROTO_TCP, TCP_CONGESTION,
&kSetCC, strlen(kSetCC)),
SyscallSucceedsWithValue(0));
char got_cc[kTcpCaNameMax];
memset(got_cc, '1', sizeof(got_cc));
socklen_t optlen = sizeof(got_cc);
ASSERT_THAT(getsockopt(sockets->first_fd(), IPPROTO_TCP, TCP_CONGESTION,
&got_cc, &optlen),
SyscallSucceedsWithValue(0));
EXPECT_EQ(0, memcmp(got_cc, kSetCC, sizeof(kSetCC)));
}
}
TEST_P(TCPSocketPairTest, SetGetTCPCongestionShortReadBuffer) {
auto sockets = ASSERT_NO_ERRNO_AND_VALUE(NewSocketPair());
{
// Verify that getsockopt/setsockopt work with buffers smaller than
// kTcpCaNameMax.
const char kSetCC[] = "cubic";
ASSERT_THAT(setsockopt(sockets->first_fd(), IPPROTO_TCP, TCP_CONGESTION,
&kSetCC, strlen(kSetCC)),
SyscallSucceedsWithValue(0));
char got_cc[sizeof(kSetCC)];
socklen_t optlen = sizeof(got_cc);
ASSERT_THAT(getsockopt(sockets->first_fd(), IPPROTO_TCP, TCP_CONGESTION,
&got_cc, &optlen),
SyscallSucceedsWithValue(0));
EXPECT_EQ(0, memcmp(got_cc, kSetCC, sizeof(got_cc)));
}
}
TEST_P(TCPSocketPairTest, SetGetTCPCongestionLargeReadBuffer) {
// This is Linux's net/tcp.h TCP_CA_NAME_MAX.
const int kTcpCaNameMax = 16;
auto sockets = ASSERT_NO_ERRNO_AND_VALUE(NewSocketPair());
{
// Verify that getsockopt works with buffers larger than
// kTcpCaNameMax.
const char kSetCC[] = "cubic";
ASSERT_THAT(setsockopt(sockets->first_fd(), IPPROTO_TCP, TCP_CONGESTION,
&kSetCC, strlen(kSetCC)),
SyscallSucceedsWithValue(0));
char got_cc[kTcpCaNameMax + 5];
socklen_t optlen = sizeof(got_cc);
ASSERT_THAT(getsockopt(sockets->first_fd(), IPPROTO_TCP, TCP_CONGESTION,
&got_cc, &optlen),
SyscallSucceedsWithValue(0));
// Linux copies the minimum of kTcpCaNameMax or the length of the passed in
// buffer and sets optlen to the number of bytes actually copied
// irrespective of the actual length of the congestion control name.
EXPECT_EQ(kTcpCaNameMax, optlen);
EXPECT_EQ(0, memcmp(got_cc, kSetCC, sizeof(kSetCC)));
}
}
TEST_P(TCPSocketPairTest, SetCongestionControlFailsForUnsupported) {
// This is Linux's net/tcp.h TCP_CA_NAME_MAX.
const int kTcpCaNameMax = 16;
auto sockets = ASSERT_NO_ERRNO_AND_VALUE(NewSocketPair());
char old_cc[kTcpCaNameMax];
socklen_t optlen = sizeof(old_cc);
ASSERT_THAT(getsockopt(sockets->first_fd(), IPPROTO_TCP, TCP_CONGESTION,
&old_cc, &optlen),
SyscallSucceedsWithValue(0));
const char kSetCC[] = "invalid_ca_cc";
ASSERT_THAT(setsockopt(sockets->first_fd(), IPPROTO_TCP, TCP_CONGESTION,
&kSetCC, strlen(kSetCC)),
SyscallFailsWithErrno(ENOENT));
char got_cc[kTcpCaNameMax];
optlen = sizeof(got_cc);
ASSERT_THAT(getsockopt(sockets->first_fd(), IPPROTO_TCP, TCP_CONGESTION,
&got_cc, &optlen),
SyscallSucceedsWithValue(0));
EXPECT_EQ(0, memcmp(got_cc, old_cc, sizeof(old_cc)));
}
// Linux and Netstack both default to a 60s TCP_LINGER2 timeout.
constexpr int kDefaultTCPLingerTimeout = 60;
TEST_P(TCPSocketPairTest, TCPLingerTimeoutDefault) {
auto sockets = ASSERT_NO_ERRNO_AND_VALUE(NewSocketPair());
int get = -1;
socklen_t get_len = sizeof(get);
EXPECT_THAT(
getsockopt(sockets->first_fd(), IPPROTO_TCP, TCP_LINGER2, &get, &get_len),
SyscallSucceedsWithValue(0));
EXPECT_EQ(get_len, sizeof(get));
EXPECT_EQ(get, kDefaultTCPLingerTimeout);
}
TEST_P(TCPSocketPairTest, SetTCPLingerTimeoutZeroOrLess) {
auto sockets = ASSERT_NO_ERRNO_AND_VALUE(NewSocketPair());
constexpr int kZero = 0;
EXPECT_THAT(setsockopt(sockets->first_fd(), IPPROTO_TCP, TCP_LINGER2, &kZero,
sizeof(kZero)),
SyscallSucceedsWithValue(0));
constexpr int kNegative = -1234;
EXPECT_THAT(setsockopt(sockets->first_fd(), IPPROTO_TCP, TCP_LINGER2,
&kNegative, sizeof(kNegative)),
SyscallSucceedsWithValue(0));
}
TEST_P(TCPSocketPairTest, SetTCPLingerTimeoutAboveDefault) {
auto sockets = ASSERT_NO_ERRNO_AND_VALUE(NewSocketPair());
// Values above the net.ipv4.tcp_fin_timeout are capped to tcp_fin_timeout
// on linux (defaults to 60 seconds on linux).
constexpr int kAboveDefault = kDefaultTCPLingerTimeout + 1;
EXPECT_THAT(setsockopt(sockets->first_fd(), IPPROTO_TCP, TCP_LINGER2,
&kAboveDefault, sizeof(kAboveDefault)),
SyscallSucceedsWithValue(0));
int get = -1;
socklen_t get_len = sizeof(get);
EXPECT_THAT(
getsockopt(sockets->first_fd(), IPPROTO_TCP, TCP_LINGER2, &get, &get_len),
SyscallSucceedsWithValue(0));
EXPECT_EQ(get_len, sizeof(get));
EXPECT_EQ(get, kDefaultTCPLingerTimeout);
}
TEST_P(TCPSocketPairTest, SetTCPLingerTimeout) {
auto sockets = ASSERT_NO_ERRNO_AND_VALUE(NewSocketPair());
// Values above the net.ipv4.tcp_fin_timeout are capped to tcp_fin_timeout
// on linux (defaults to 60 seconds on linux).
constexpr int kTCPLingerTimeout = kDefaultTCPLingerTimeout - 1;
EXPECT_THAT(setsockopt(sockets->first_fd(), IPPROTO_TCP, TCP_LINGER2,
&kTCPLingerTimeout, sizeof(kTCPLingerTimeout)),
SyscallSucceedsWithValue(0));
int get = -1;
socklen_t get_len = sizeof(get);
EXPECT_THAT(
getsockopt(sockets->first_fd(), IPPROTO_TCP, TCP_LINGER2, &get, &get_len),
SyscallSucceedsWithValue(0));
EXPECT_EQ(get_len, sizeof(get));
EXPECT_EQ(get, kTCPLingerTimeout);
}
TEST_P(TCPSocketPairTest, TestTCPCloseWithData) {
auto sockets = ASSERT_NO_ERRNO_AND_VALUE(NewSocketPair());
ScopedThread t([&]() {
// Close one end to trigger sending of a FIN.
ASSERT_THAT(shutdown(sockets->second_fd(), SHUT_WR), SyscallSucceeds());
char buf[3];
ASSERT_THAT(read(sockets->second_fd(), buf, 3),
SyscallSucceedsWithValue(3));
absl::SleepFor(absl::Milliseconds(50));
ASSERT_THAT(close(sockets->release_second_fd()), SyscallSucceeds());
});
absl::SleepFor(absl::Milliseconds(50));
// Send some data then close.
constexpr char kStr[] = "abc";
ASSERT_THAT(write(sockets->first_fd(), kStr, 3), SyscallSucceedsWithValue(3));
t.Join();
ASSERT_THAT(close(sockets->release_first_fd()), SyscallSucceeds());
}
TEST_P(TCPSocketPairTest, TCPUserTimeoutDefault) {
auto sockets = ASSERT_NO_ERRNO_AND_VALUE(NewSocketPair());
int get = -1;
socklen_t get_len = sizeof(get);
ASSERT_THAT(getsockopt(sockets->first_fd(), IPPROTO_TCP, TCP_USER_TIMEOUT,
&get, &get_len),
SyscallSucceeds());
EXPECT_EQ(get_len, sizeof(get));
EXPECT_EQ(get, 0); // 0 ms (disabled).
}
TEST_P(TCPSocketPairTest, SetTCPUserTimeoutZero) {
auto sockets = ASSERT_NO_ERRNO_AND_VALUE(NewSocketPair());
constexpr int kZero = 0;
ASSERT_THAT(setsockopt(sockets->first_fd(), IPPROTO_TCP, TCP_USER_TIMEOUT,
&kZero, sizeof(kZero)),
SyscallSucceeds());
int get = -1;
socklen_t get_len = sizeof(get);
ASSERT_THAT(getsockopt(sockets->first_fd(), IPPROTO_TCP, TCP_USER_TIMEOUT,
&get, &get_len),
SyscallSucceeds());
EXPECT_EQ(get_len, sizeof(get));
EXPECT_EQ(get, 0); // 0 ms (disabled).
}
TEST_P(TCPSocketPairTest, SetTCPUserTimeoutBelowZero) {
auto sockets = ASSERT_NO_ERRNO_AND_VALUE(NewSocketPair());
constexpr int kNeg = -10;
EXPECT_THAT(setsockopt(sockets->first_fd(), IPPROTO_TCP, TCP_USER_TIMEOUT,
&kNeg, sizeof(kNeg)),
SyscallFailsWithErrno(EINVAL));
int get = -1;
socklen_t get_len = sizeof(get);
ASSERT_THAT(getsockopt(sockets->first_fd(), IPPROTO_TCP, TCP_USER_TIMEOUT,
&get, &get_len),
SyscallSucceeds());
EXPECT_EQ(get_len, sizeof(get));
EXPECT_EQ(get, 0); // 0 ms (disabled).
}
TEST_P(TCPSocketPairTest, SetTCPUserTimeoutAboveZero) {
auto sockets = ASSERT_NO_ERRNO_AND_VALUE(NewSocketPair());
constexpr int kAbove = 10;
ASSERT_THAT(setsockopt(sockets->first_fd(), IPPROTO_TCP, TCP_USER_TIMEOUT,
&kAbove, sizeof(kAbove)),
SyscallSucceeds());
int get = -1;
socklen_t get_len = sizeof(get);
ASSERT_THAT(getsockopt(sockets->first_fd(), IPPROTO_TCP, TCP_USER_TIMEOUT,
&get, &get_len),
SyscallSucceeds());
EXPECT_EQ(get_len, sizeof(get));
EXPECT_EQ(get, kAbove);
}
TEST_P(TCPSocketPairTest, TCPResetDuringClose_NoRandomSave) {
DisableSave ds; // Too many syscalls.
constexpr int kThreadCount = 1000;
std::unique_ptr<ScopedThread> instances[kThreadCount];
for (int i = 0; i < kThreadCount; i++) {
instances[i] = absl::make_unique<ScopedThread>([&]() {
auto sockets = ASSERT_NO_ERRNO_AND_VALUE(NewSocketPair());
ScopedThread t([&]() {
// Close one end to trigger sending of a FIN.
struct pollfd poll_fd = {sockets->second_fd(), POLLIN | POLLHUP, 0};
// Wait up to 20 seconds for the data.
constexpr int kPollTimeoutMs = 20000;
ASSERT_THAT(RetryEINTR(poll)(&poll_fd, 1, kPollTimeoutMs),
SyscallSucceedsWithValue(1));
ASSERT_THAT(close(sockets->release_second_fd()), SyscallSucceeds());
});
// Send some data then close.
constexpr char kStr[] = "abc";
ASSERT_THAT(write(sockets->first_fd(), kStr, 3),
SyscallSucceedsWithValue(3));
absl::SleepFor(absl::Milliseconds(10));
ASSERT_THAT(close(sockets->release_first_fd()), SyscallSucceeds());
t.Join();
});
}
for (int i = 0; i < kThreadCount; i++) {
instances[i]->Join();
}
}
} // namespace testing
} // namespace gvisor
|