summaryrefslogtreecommitdiffhomepage
path: root/test/syscalls/linux/ptrace.cc
blob: f063cc92bc64f8d8ca9fbcbaa2a6c238cf041262 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
// Copyright 2018 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <elf.h>
#include <signal.h>
#include <stddef.h>
#include <sys/ptrace.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/user.h>
#include <sys/wait.h>
#include <unistd.h>

#include <utility>

#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/time/clock.h"
#include "absl/time/time.h"
#include "test/util/logging.h"
#include "test/util/multiprocess_util.h"
#include "test/util/signal_util.h"
#include "test/util/test_util.h"
#include "test/util/thread_util.h"

DEFINE_bool(ptrace_test_execve_child, false,
            "If true, run the "
            "PtraceExecveTest_Execve_GetRegs_PeekUser_SIGKILL_TraceClone_"
            "TraceExit child workload.");

namespace gvisor {
namespace testing {

namespace {

// Sends sig to the current process with tgkill(2).
//
// glibc's raise(2) may change the signal mask before sending the signal. These
// extra syscalls make tests of syscall, signal interception, etc. difficult to
// write.
void RaiseSignal(int sig) {
  pid_t pid = getpid();
  TEST_PCHECK(pid > 0);
  pid_t tid = gettid();
  TEST_PCHECK(tid > 0);
  TEST_PCHECK(tgkill(pid, tid, sig) == 0);
}

// Returns the Yama ptrace scope.
PosixErrorOr<int> YamaPtraceScope() {
  constexpr char kYamaPtraceScopePath[] = "/proc/sys/kernel/yama/ptrace_scope";

  ASSIGN_OR_RETURN_ERRNO(bool exists, Exists(kYamaPtraceScopePath));
  if (!exists) {
    // File doesn't exist means no Yama, so the scope is disabled -> 0.
    return 0;
  }

  std::string contents;
  RETURN_IF_ERRNO(GetContents(kYamaPtraceScopePath, &contents));

  int scope;
  if (!absl::SimpleAtoi(contents, &scope)) {
    return PosixError(EINVAL, absl::StrCat(contents, ": not a valid number"));
  }

  return scope;
}

TEST(PtraceTest, AttachSelf) {
  EXPECT_THAT(ptrace(PTRACE_ATTACH, gettid(), 0, 0),
              SyscallFailsWithErrno(EPERM));
}

TEST(PtraceTest, AttachSameThreadGroup) {
  pid_t const tid = gettid();
  ScopedThread([&] {
    EXPECT_THAT(ptrace(PTRACE_ATTACH, tid, 0, 0), SyscallFailsWithErrno(EPERM));
  });
}

TEST(PtraceTest, AttachParent_PeekData_PokeData_SignalSuppression) {
  // Yama prevents attaching to a parent. Skip the test if the scope is anything
  // except disabled.
  SKIP_IF(ASSERT_NO_ERRNO_AND_VALUE(YamaPtraceScope()) > 0);

  constexpr long kBeforePokeDataValue = 10;
  constexpr long kAfterPokeDataValue = 20;

  volatile long word = kBeforePokeDataValue;

  pid_t const child_pid = fork();
  if (child_pid == 0) {
    // In child process.

    // Attach to the parent.
    pid_t const parent_pid = getppid();
    TEST_PCHECK(ptrace(PTRACE_ATTACH, parent_pid, 0, 0) == 0);
    MaybeSave();

    // Block until the parent enters signal-delivery-stop as a result of the
    // SIGSTOP sent by PTRACE_ATTACH.
    int status;
    TEST_PCHECK(waitpid(parent_pid, &status, 0) == parent_pid);
    MaybeSave();
    TEST_CHECK(WIFSTOPPED(status) && WSTOPSIG(status) == SIGSTOP);

    // Replace the value of word in the parent process with kAfterPokeDataValue.
    long const parent_word = ptrace(PTRACE_PEEKDATA, parent_pid, &word, 0);
    MaybeSave();
    TEST_CHECK(parent_word == kBeforePokeDataValue);
    TEST_PCHECK(
        ptrace(PTRACE_POKEDATA, parent_pid, &word, kAfterPokeDataValue) == 0);
    MaybeSave();

    // Detach from the parent and suppress the SIGSTOP. If the SIGSTOP is not
    // suppressed, the parent will hang in group-stop, causing the test to time
    // out.
    TEST_PCHECK(ptrace(PTRACE_DETACH, parent_pid, 0, 0) == 0);
    MaybeSave();
    _exit(0);
  }
  // In parent process.
  ASSERT_THAT(child_pid, SyscallSucceeds());

  // Wait for the child to complete.
  int status;
  ASSERT_THAT(waitpid(child_pid, &status, 0),
              SyscallSucceedsWithValue(child_pid));
  EXPECT_TRUE(WIFEXITED(status) && WEXITSTATUS(status) == 0)
      << " status " << status;

  // Check that the child's PTRACE_POKEDATA was effective.
  EXPECT_EQ(kAfterPokeDataValue, word);
}

TEST(PtraceTest, GetSigMask) {
  // <sys/user.h> doesn't define these until Linux 4.4, even though the features
  // were added in 3.11.
  constexpr auto kPtraceGetSigMask = static_cast<enum __ptrace_request>(0x420a);
  constexpr auto kPtraceSetSigMask = static_cast<enum __ptrace_request>(0x420b);
  // glibc and the Linux kernel define a sigset_t with different sizes. To avoid
  // creating a kernel_sigset_t and recreating all the modification functions
  // (sigemptyset, etc), we just hardcode the kernel sigset size.
  constexpr int kSizeofKernelSigset = 8;
  constexpr int kBlockSignal = SIGUSR1;
  sigset_t blocked;
  sigemptyset(&blocked);
  sigaddset(&blocked, kBlockSignal);

  pid_t const child_pid = fork();
  if (child_pid == 0) {
    // In child process.

    // Install a signal handler for kBlockSignal to avoid termination and block
    // it.
    TEST_PCHECK(signal(kBlockSignal, +[](int signo) {}) != SIG_ERR);
    MaybeSave();
    TEST_PCHECK(sigprocmask(SIG_SETMASK, &blocked, nullptr) == 0);
    MaybeSave();

    // Enable tracing.
    TEST_PCHECK(ptrace(PTRACE_TRACEME, 0, 0, 0) == 0);
    MaybeSave();

    // This should be blocked.
    RaiseSignal(kBlockSignal);

    // This should be suppressed by parent, who will change signal mask in the
    // meantime, which means kBlockSignal should be delivered once this resumes.
    RaiseSignal(SIGSTOP);

    _exit(0);
  }
  // In parent process.
  ASSERT_THAT(child_pid, SyscallSucceeds());

  // Wait for the child to send itself SIGSTOP and enter signal-delivery-stop.
  int status;
  ASSERT_THAT(waitpid(child_pid, &status, 0),
              SyscallSucceedsWithValue(child_pid));
  EXPECT_TRUE(WIFSTOPPED(status) && WSTOPSIG(status) == SIGSTOP)
      << " status " << status;

  // Get current signal mask.
  sigset_t set;
  EXPECT_THAT(ptrace(kPtraceGetSigMask, child_pid, kSizeofKernelSigset, &set),
              SyscallSucceeds());
  EXPECT_THAT(blocked, EqualsSigset(set));

  // Try to get current signal mask with bad size argument.
  EXPECT_THAT(ptrace(kPtraceGetSigMask, child_pid, 0, nullptr),
              SyscallFailsWithErrno(EINVAL));

  // Try to set bad signal mask.
  sigset_t* bad_addr = reinterpret_cast<sigset_t*>(-1);
  EXPECT_THAT(
      ptrace(kPtraceSetSigMask, child_pid, kSizeofKernelSigset, bad_addr),
      SyscallFailsWithErrno(EFAULT));

  // Set signal mask to empty set.
  sigset_t set1;
  sigemptyset(&set1);
  EXPECT_THAT(ptrace(kPtraceSetSigMask, child_pid, kSizeofKernelSigset, &set1),
              SyscallSucceeds());

  // Suppress SIGSTOP and resume the child. It should re-enter
  // signal-delivery-stop for kBlockSignal.
  ASSERT_THAT(ptrace(PTRACE_CONT, child_pid, 0, 0), SyscallSucceeds());
  ASSERT_THAT(waitpid(child_pid, &status, 0),
              SyscallSucceedsWithValue(child_pid));
  EXPECT_TRUE(WIFSTOPPED(status) && WSTOPSIG(status) == kBlockSignal)
      << " status " << status;

  ASSERT_THAT(ptrace(PTRACE_CONT, child_pid, 0, 0), SyscallSucceeds());
  ASSERT_THAT(waitpid(child_pid, &status, 0),
              SyscallSucceedsWithValue(child_pid));
  // Let's see that process exited normally.
  EXPECT_TRUE(WIFEXITED(status) && WEXITSTATUS(status) == 0)
      << " status " << status;
}

TEST(PtraceTest, GetSiginfo_SetSiginfo_SignalInjection) {
  constexpr int kOriginalSigno = SIGUSR1;
  constexpr int kInjectedSigno = SIGUSR2;

  pid_t const child_pid = fork();
  if (child_pid == 0) {
    // In child process.

    // Override all signal handlers.
    struct sigaction sa = {};
    sa.sa_handler = +[](int signo) { _exit(signo); };
    TEST_PCHECK(sigfillset(&sa.sa_mask) == 0);
    for (int signo = 1; signo < 32; signo++) {
      if (signo == SIGKILL || signo == SIGSTOP) {
        continue;
      }
      TEST_PCHECK(sigaction(signo, &sa, nullptr) == 0);
    }
    for (int signo = SIGRTMIN; signo <= SIGRTMAX; signo++) {
      TEST_PCHECK(sigaction(signo, &sa, nullptr) == 0);
    }

    // Unblock all signals.
    TEST_PCHECK(sigprocmask(SIG_UNBLOCK, &sa.sa_mask, nullptr) == 0);
    MaybeSave();

    // Send ourselves kOriginalSignal while ptraced and exit with the signal we
    // actually receive via the signal handler, if any, or 0 if we don't receive
    // a signal.
    TEST_PCHECK(ptrace(PTRACE_TRACEME, 0, 0, 0) == 0);
    MaybeSave();
    RaiseSignal(kOriginalSigno);
    _exit(0);
  }
  // In parent process.
  ASSERT_THAT(child_pid, SyscallSucceeds());

  // Wait for the child to send itself kOriginalSigno and enter
  // signal-delivery-stop.
  int status;
  ASSERT_THAT(waitpid(child_pid, &status, 0),
              SyscallSucceedsWithValue(child_pid));
  EXPECT_TRUE(WIFSTOPPED(status) && WSTOPSIG(status) == kOriginalSigno)
      << " status " << status;

  siginfo_t siginfo = {};
  ASSERT_THAT(ptrace(PTRACE_GETSIGINFO, child_pid, 0, &siginfo),
              SyscallSucceeds());
  EXPECT_EQ(kOriginalSigno, siginfo.si_signo);
  EXPECT_EQ(SI_TKILL, siginfo.si_code);

  // Replace the signal with kInjectedSigno, and check that the child exits
  // with kInjectedSigno, indicating that signal injection was successful.
  siginfo.si_signo = kInjectedSigno;
  ASSERT_THAT(ptrace(PTRACE_SETSIGINFO, child_pid, 0, &siginfo),
              SyscallSucceeds());
  ASSERT_THAT(ptrace(PTRACE_DETACH, child_pid, 0, kInjectedSigno),
              SyscallSucceeds());
  ASSERT_THAT(waitpid(child_pid, &status, 0),
              SyscallSucceedsWithValue(child_pid));
  EXPECT_TRUE(WIFEXITED(status) && WEXITSTATUS(status) == kInjectedSigno)
      << " status " << status;
}

TEST(PtraceTest, SIGKILLDoesNotCauseSignalDeliveryStop) {
  pid_t const child_pid = fork();
  if (child_pid == 0) {
    // In child process.
    TEST_PCHECK(ptrace(PTRACE_TRACEME, 0, 0, 0) == 0);
    MaybeSave();
    RaiseSignal(SIGKILL);
    TEST_CHECK_MSG(false, "Survived SIGKILL?");
    _exit(1);
  }
  // In parent process.
  ASSERT_THAT(child_pid, SyscallSucceeds());

  // Expect the child to die to SIGKILL without entering signal-delivery-stop.
  int status;
  ASSERT_THAT(waitpid(child_pid, &status, 0),
              SyscallSucceedsWithValue(child_pid));
  EXPECT_TRUE(WIFSIGNALED(status) && WTERMSIG(status) == SIGKILL)
      << " status " << status;
}

TEST(PtraceTest, PtraceKill) {
  constexpr int kOriginalSigno = SIGUSR1;

  pid_t const child_pid = fork();
  if (child_pid == 0) {
    // In child process.
    TEST_PCHECK(ptrace(PTRACE_TRACEME, 0, 0, 0) == 0);
    MaybeSave();

    // PTRACE_KILL only works if tracee has entered signal-delivery-stop.
    RaiseSignal(kOriginalSigno);
    TEST_CHECK_MSG(false, "Failed to kill the process?");
    _exit(0);
  }
  // In parent process.
  ASSERT_THAT(child_pid, SyscallSucceeds());

  // Wait for the child to send itself kOriginalSigno and enter
  // signal-delivery-stop.
  int status;
  ASSERT_THAT(waitpid(child_pid, &status, 0),
              SyscallSucceedsWithValue(child_pid));
  EXPECT_TRUE(WIFSTOPPED(status) && WSTOPSIG(status) == kOriginalSigno)
      << " status " << status;

  ASSERT_THAT(ptrace(PTRACE_KILL, child_pid, 0, 0), SyscallSucceeds());

  // Expect the child to die with SIGKILL.
  ASSERT_THAT(waitpid(child_pid, &status, 0),
              SyscallSucceedsWithValue(child_pid));
  EXPECT_TRUE(WIFSIGNALED(status) && WTERMSIG(status) == SIGKILL)
      << " status " << status;
}

TEST(PtraceTest, GetRegSet) {
  pid_t const child_pid = fork();
  if (child_pid == 0) {
    // In child process.

    // Enable tracing.
    TEST_PCHECK(ptrace(PTRACE_TRACEME, 0, 0, 0) == 0);
    MaybeSave();

    // Use kill explicitly because we check the syscall argument register below.
    kill(getpid(), SIGSTOP);

    _exit(0);
  }
  // In parent process.
  ASSERT_THAT(child_pid, SyscallSucceeds());

  // Wait for the child to send itself SIGSTOP and enter signal-delivery-stop.
  int status;
  ASSERT_THAT(waitpid(child_pid, &status, 0),
              SyscallSucceedsWithValue(child_pid));
  EXPECT_TRUE(WIFSTOPPED(status) && WSTOPSIG(status) == SIGSTOP)
      << " status " << status;

  // Get the general registers.
  struct user_regs_struct regs;
  struct iovec iov;
  iov.iov_base = &regs;
  iov.iov_len = sizeof(regs);
  EXPECT_THAT(ptrace(PTRACE_GETREGSET, child_pid, NT_PRSTATUS, &iov),
              SyscallSucceeds());

  // Read exactly the full register set.
  EXPECT_EQ(iov.iov_len, sizeof(regs));

#ifdef __x86_64__
  // Child called kill(2), with SIGSTOP as arg 2.
  EXPECT_EQ(regs.rsi, SIGSTOP);
#endif

  // Suppress SIGSTOP and resume the child.
  ASSERT_THAT(ptrace(PTRACE_CONT, child_pid, 0, 0), SyscallSucceeds());
  ASSERT_THAT(waitpid(child_pid, &status, 0),
              SyscallSucceedsWithValue(child_pid));
  // Let's see that process exited normally.
  EXPECT_TRUE(WIFEXITED(status) && WEXITSTATUS(status) == 0)
      << " status " << status;
}

TEST(PtraceTest, AttachingConvertsGroupStopToPtraceStop) {
  pid_t const child_pid = fork();
  if (child_pid == 0) {
    // In child process.
    while (true) {
      pause();
    }
  }
  // In parent process.
  ASSERT_THAT(child_pid, SyscallSucceeds());

  // SIGSTOP the child and wait for it to stop.
  ASSERT_THAT(kill(child_pid, SIGSTOP), SyscallSucceeds());
  int status;
  ASSERT_THAT(waitpid(child_pid, &status, WUNTRACED),
              SyscallSucceedsWithValue(child_pid));
  EXPECT_TRUE(WIFSTOPPED(status) && WSTOPSIG(status) == SIGSTOP)
      << " status " << status;

  // Attach to the child and expect it to re-enter a traced group-stop despite
  // already being stopped.
  ASSERT_THAT(ptrace(PTRACE_ATTACH, child_pid, 0, 0), SyscallSucceeds());
  ASSERT_THAT(waitpid(child_pid, &status, 0),
              SyscallSucceedsWithValue(child_pid));
  EXPECT_TRUE(WIFSTOPPED(status) && WSTOPSIG(status) == SIGSTOP)
      << " status " << status;

  // Verify that the child is ptrace-stopped by checking that it can receive
  // ptrace commands requiring a ptrace-stop.
  EXPECT_THAT(ptrace(PTRACE_SETOPTIONS, child_pid, 0, 0), SyscallSucceeds());

  // Group-stop is distinguished from signal-delivery-stop by PTRACE_GETSIGINFO
  // failing with EINVAL.
  siginfo_t siginfo = {};
  EXPECT_THAT(ptrace(PTRACE_GETSIGINFO, child_pid, 0, &siginfo),
              SyscallFailsWithErrno(EINVAL));

  // Detach from the child and expect it to stay stopped without a notification.
  ASSERT_THAT(ptrace(PTRACE_DETACH, child_pid, 0, 0), SyscallSucceeds());
  ASSERT_THAT(waitpid(child_pid, &status, WUNTRACED | WNOHANG),
              SyscallSucceedsWithValue(0));

  // Sending it SIGCONT should cause it to leave its stop.
  ASSERT_THAT(kill(child_pid, SIGCONT), SyscallSucceeds());
  ASSERT_THAT(waitpid(child_pid, &status, WCONTINUED),
              SyscallSucceedsWithValue(child_pid));
  EXPECT_TRUE(WIFCONTINUED(status)) << " status " << status;

  // Clean up the child.
  ASSERT_THAT(kill(child_pid, SIGKILL), SyscallSucceeds());
  ASSERT_THAT(waitpid(child_pid, &status, 0),
              SyscallSucceedsWithValue(child_pid));
  EXPECT_TRUE(WIFSIGNALED(status) && WTERMSIG(status) == SIGKILL)
      << " status " << status;
}

// Fixture for tests parameterized by whether or not to use PTRACE_O_TRACEEXEC.
class PtraceExecveTest : public ::testing::TestWithParam<bool> {
 protected:
  bool TraceExec() const { return GetParam(); }
};

TEST_P(PtraceExecveTest, Execve_GetRegs_PeekUser_SIGKILL_TraceClone_TraceExit) {
  ExecveArray const owned_child_argv = {"/proc/self/exe",
                                        "--ptrace_test_execve_child"};
  char* const* const child_argv = owned_child_argv.get();

  pid_t const child_pid = fork();
  if (child_pid == 0) {
    // In child process. The test relies on calling execve() in a non-leader
    // thread; pthread_create() isn't async-signal-safe, so the safest way to
    // do this is to execve() first, then enable tracing and run the expected
    // child process behavior in the new subprocess.
    execve(child_argv[0], child_argv, /* envp = */ nullptr);
    TEST_PCHECK_MSG(false, "Survived execve to test child");
  }
  // In parent process.
  ASSERT_THAT(child_pid, SyscallSucceeds());

  // Wait for the child to send itself SIGSTOP and enter signal-delivery-stop.
  int status;
  ASSERT_THAT(waitpid(child_pid, &status, 0),
              SyscallSucceedsWithValue(child_pid));
  EXPECT_TRUE(WIFSTOPPED(status) && WSTOPSIG(status) == SIGSTOP)
      << " status " << status;

  // Enable PTRACE_O_TRACECLONE so we can get the ID of the child's non-leader
  // thread, PTRACE_O_TRACEEXIT so we can observe the leader's death, and
  // PTRACE_O_TRACEEXEC if required by the test. (The leader doesn't call
  // execve, but options should be inherited across clone.)
  long opts = PTRACE_O_TRACECLONE | PTRACE_O_TRACEEXIT;
  if (TraceExec()) {
    opts |= PTRACE_O_TRACEEXEC;
  }
  ASSERT_THAT(ptrace(PTRACE_SETOPTIONS, child_pid, 0, opts), SyscallSucceeds());

  // Suppress the SIGSTOP and wait for the child's leader thread to report
  // PTRACE_EVENT_CLONE. Get the new thread's ID from the event.
  ASSERT_THAT(ptrace(PTRACE_CONT, child_pid, 0, 0), SyscallSucceeds());
  ASSERT_THAT(waitpid(child_pid, &status, 0),
              SyscallSucceedsWithValue(child_pid));
  EXPECT_EQ(SIGTRAP | (PTRACE_EVENT_CLONE << 8), status >> 8);
  unsigned long eventmsg;
  ASSERT_THAT(ptrace(PTRACE_GETEVENTMSG, child_pid, 0, &eventmsg),
              SyscallSucceeds());
  pid_t const nonleader_tid = eventmsg;
  pid_t const leader_tid = child_pid;

  // The new thread should be ptraced and in signal-delivery-stop by SIGSTOP due
  // to PTRACE_O_TRACECLONE.
  //
  // Before bf959931ddb88c4e4366e96dd22e68fa0db9527c "wait/ptrace: assume __WALL
  // if the child is traced" (4.7) , waiting on it requires __WCLONE since, as a
  // non-leader, its termination signal is 0. After, a standard wait is
  // sufficient.
  ASSERT_THAT(waitpid(nonleader_tid, &status, __WCLONE),
              SyscallSucceedsWithValue(nonleader_tid));
  EXPECT_TRUE(WIFSTOPPED(status) && WSTOPSIG(status) == SIGSTOP)
      << " status " << status;

  // Resume both child threads.
  for (pid_t const tid : {leader_tid, nonleader_tid}) {
    ASSERT_THAT(ptrace(PTRACE_CONT, tid, 0, 0), SyscallSucceeds());
  }

  // The non-leader child thread should call execve, causing the leader thread
  // to enter PTRACE_EVENT_EXIT with an apparent exit code of 0. At this point,
  // the leader has not yet exited, so the non-leader should be blocked in
  // execve.
  ASSERT_THAT(waitpid(leader_tid, &status, 0),
              SyscallSucceedsWithValue(leader_tid));
  EXPECT_EQ(SIGTRAP | (PTRACE_EVENT_EXIT << 8), status >> 8);
  ASSERT_THAT(ptrace(PTRACE_GETEVENTMSG, leader_tid, 0, &eventmsg),
              SyscallSucceeds());
  EXPECT_TRUE(WIFEXITED(eventmsg) && WEXITSTATUS(eventmsg) == 0)
      << " eventmsg " << eventmsg;
  EXPECT_THAT(waitpid(nonleader_tid, &status, __WCLONE | WNOHANG),
              SyscallSucceedsWithValue(0));

  // Allow the leader to continue exiting. This should allow the non-leader to
  // complete its execve, causing the original leader to be reaped without
  // further notice and the non-leader to steal its ID.
  ASSERT_THAT(ptrace(PTRACE_CONT, leader_tid, 0, 0), SyscallSucceeds());
  ASSERT_THAT(waitpid(leader_tid, &status, 0),
              SyscallSucceedsWithValue(leader_tid));
  if (TraceExec()) {
    // If PTRACE_O_TRACEEXEC was enabled, the execing thread should be in
    // PTRACE_EVENT_EXEC-stop, with the event message set to its old thread ID.
    EXPECT_EQ(SIGTRAP | (PTRACE_EVENT_EXEC << 8), status >> 8);
    ASSERT_THAT(ptrace(PTRACE_GETEVENTMSG, leader_tid, 0, &eventmsg),
                SyscallSucceeds());
    EXPECT_EQ(nonleader_tid, eventmsg);
  } else {
    // Otherwise, the execing thread should have received SIGTRAP and should now
    // be in signal-delivery-stop.
    EXPECT_TRUE(WIFSTOPPED(status) && WSTOPSIG(status) == SIGTRAP)
        << " status " << status;
  }

#ifdef __x86_64__
  {
    // CS should be 0x33, indicating an 64-bit binary.
    constexpr uint64_t kAMD64UserCS = 0x33;
    EXPECT_THAT(ptrace(PTRACE_PEEKUSER, leader_tid,
                       offsetof(struct user_regs_struct, cs), 0),
                SyscallSucceedsWithValue(kAMD64UserCS));
    struct user_regs_struct regs = {};
    ASSERT_THAT(ptrace(PTRACE_GETREGS, leader_tid, 0, &regs),
                SyscallSucceeds());
    EXPECT_EQ(kAMD64UserCS, regs.cs);
  }
#endif  // defined(__x86_64__)

  // PTRACE_O_TRACEEXIT should have been inherited across execve. Send SIGKILL,
  // which should end the PTRACE_EVENT_EXEC-stop or signal-delivery-stop and
  // leave the child in PTRACE_EVENT_EXIT-stop.
  ASSERT_THAT(kill(leader_tid, SIGKILL), SyscallSucceeds());
  ASSERT_THAT(waitpid(leader_tid, &status, 0),
              SyscallSucceedsWithValue(leader_tid));
  EXPECT_EQ(SIGTRAP | (PTRACE_EVENT_EXIT << 8), status >> 8);
  ASSERT_THAT(ptrace(PTRACE_GETEVENTMSG, leader_tid, 0, &eventmsg),
              SyscallSucceeds());
  EXPECT_TRUE(WIFSIGNALED(eventmsg) && WTERMSIG(eventmsg) == SIGKILL)
      << " eventmsg " << eventmsg;

  // End the PTRACE_EVENT_EXIT stop, allowing the child to exit.
  ASSERT_THAT(ptrace(PTRACE_CONT, leader_tid, 0, 0), SyscallSucceeds());
  ASSERT_THAT(waitpid(leader_tid, &status, 0),
              SyscallSucceedsWithValue(leader_tid));
  EXPECT_TRUE(WIFSIGNALED(status) && WTERMSIG(status) == SIGKILL)
      << " status " << status;
}

[[noreturn]] void RunExecveChild() {
  // Enable tracing, then raise SIGSTOP and expect our parent to suppress it.
  TEST_PCHECK(ptrace(PTRACE_TRACEME, 0, 0, 0) == 0);
  MaybeSave();
  RaiseSignal(SIGSTOP);
  MaybeSave();

  // Call execve() in a non-leader thread. As long as execve() succeeds, what
  // exactly we execve() shouldn't really matter, since the tracer should kill
  // us after execve() completes.
  ScopedThread t([&] {
    ExecveArray const owned_child_argv = {"/proc/self/exe",
                                          "--this_flag_shouldnt_exist"};
    char* const* const child_argv = owned_child_argv.get();
    execve(child_argv[0], child_argv, /* envp = */ nullptr);
    TEST_PCHECK_MSG(false, "Survived execve? (thread)");
  });
  t.Join();
  TEST_CHECK_MSG(false, "Survived execve? (main)");
  _exit(1);
}

INSTANTIATE_TEST_CASE_P(TraceExec, PtraceExecveTest, ::testing::Bool());

// This test has expectations on when syscall-enter/exit-stops occur that are
// violated if saving occurs, since saving interrupts all syscalls, causing
// premature syscall-exit.
TEST(PtraceTest,
     ExitWhenParentIsNotTracer_Syscall_TraceVfork_TraceVforkDone_NoRandomSave) {
  constexpr int kExitTraceeExitCode = 99;

  pid_t const child_pid = fork();
  if (child_pid == 0) {
    // In child process.

    // Block SIGCHLD so it doesn't interrupt wait4.
    sigset_t mask;
    TEST_PCHECK(sigemptyset(&mask) == 0);
    TEST_PCHECK(sigaddset(&mask, SIGCHLD) == 0);
    TEST_PCHECK(sigprocmask(SIG_SETMASK, &mask, nullptr) == 0);
    MaybeSave();

    // Enable tracing, then raise SIGSTOP and expect our parent to suppress it.
    TEST_PCHECK(ptrace(PTRACE_TRACEME, 0, 0, 0) == 0);
    MaybeSave();
    RaiseSignal(SIGSTOP);
    MaybeSave();

    // Spawn a vfork child that exits immediately, and reap it. Don't save
    // after vfork since the parent expects to see wait4 as the next syscall.
    pid_t const pid = vfork();
    if (pid == 0) {
      _exit(kExitTraceeExitCode);
    }
    TEST_PCHECK_MSG(pid > 0, "vfork failed");

    int status;
    TEST_PCHECK(wait4(pid, &status, 0, nullptr) > 0);
    MaybeSave();
    TEST_CHECK(WIFEXITED(status) && WEXITSTATUS(status) == kExitTraceeExitCode);
    _exit(0);
  }
  // In parent process.
  ASSERT_THAT(child_pid, SyscallSucceeds());

  // Wait for the child to send itself SIGSTOP and enter signal-delivery-stop.
  int status;
  ASSERT_THAT(child_pid, SyscallSucceeds());
  ASSERT_THAT(waitpid(child_pid, &status, 0),
              SyscallSucceedsWithValue(child_pid));
  EXPECT_TRUE(WIFSTOPPED(status) && WSTOPSIG(status) == SIGSTOP)
      << " status " << status;

  // Enable PTRACE_O_TRACEVFORK so we can get the ID of the grandchild,
  // PTRACE_O_TRACEVFORKDONE so we can observe PTRACE_EVENT_VFORK_DONE, and
  // PTRACE_O_TRACESYSGOOD so syscall-enter/exit-stops are unambiguously
  // indicated by a stop signal of SIGTRAP|0x80 rather than just SIGTRAP.
  ASSERT_THAT(ptrace(PTRACE_SETOPTIONS, child_pid, 0,
                     PTRACE_O_TRACEVFORK | PTRACE_O_TRACEVFORKDONE |
                         PTRACE_O_TRACESYSGOOD),
              SyscallSucceeds());

  // Suppress the SIGSTOP and wait for the child to report PTRACE_EVENT_VFORK.
  // Get the new process' ID from the event.
  ASSERT_THAT(ptrace(PTRACE_CONT, child_pid, 0, 0), SyscallSucceeds());
  ASSERT_THAT(waitpid(child_pid, &status, 0),
              SyscallSucceedsWithValue(child_pid));
  EXPECT_EQ(SIGTRAP | (PTRACE_EVENT_VFORK << 8), status >> 8);
  unsigned long eventmsg;
  ASSERT_THAT(ptrace(PTRACE_GETEVENTMSG, child_pid, 0, &eventmsg),
              SyscallSucceeds());
  pid_t const grandchild_pid = eventmsg;

  // The grandchild should be traced by us and in signal-delivery-stop by
  // SIGSTOP due to PTRACE_O_TRACEVFORK. This allows us to wait on it even
  // though we're not its parent.
  ASSERT_THAT(waitpid(grandchild_pid, &status, 0),
              SyscallSucceedsWithValue(grandchild_pid));
  EXPECT_TRUE(WIFSTOPPED(status) && WSTOPSIG(status) == SIGSTOP)
      << " status " << status;

  // Resume the child with PTRACE_SYSCALL. Since the grandchild is still in
  // signal-delivery-stop, the child should remain in vfork() waiting for the
  // grandchild to exec or exit.
  ASSERT_THAT(ptrace(PTRACE_SYSCALL, child_pid, 0, 0), SyscallSucceeds());
  absl::SleepFor(absl::Seconds(1));
  ASSERT_THAT(waitpid(child_pid, &status, WNOHANG),
              SyscallSucceedsWithValue(0));

  // Suppress the grandchild's SIGSTOP and wait for the grandchild to exit. Pass
  // WNOWAIT to waitid() so that we don't acknowledge the grandchild's exit yet.
  ASSERT_THAT(ptrace(PTRACE_CONT, grandchild_pid, 0, 0), SyscallSucceeds());
  siginfo_t siginfo = {};
  ASSERT_THAT(waitid(P_PID, grandchild_pid, &siginfo, WEXITED | WNOWAIT),
              SyscallSucceeds());
  EXPECT_EQ(SIGCHLD, siginfo.si_signo);
  EXPECT_EQ(CLD_EXITED, siginfo.si_code);
  EXPECT_EQ(kExitTraceeExitCode, siginfo.si_status);
  EXPECT_EQ(grandchild_pid, siginfo.si_pid);
  EXPECT_EQ(getuid(), siginfo.si_uid);

  // The child should now be in PTRACE_EVENT_VFORK_DONE stop. The event
  // message should still be the grandchild's PID.
  ASSERT_THAT(waitpid(child_pid, &status, 0),
              SyscallSucceedsWithValue(child_pid));
  EXPECT_EQ(SIGTRAP | (PTRACE_EVENT_VFORK_DONE << 8), status >> 8);
  ASSERT_THAT(ptrace(PTRACE_GETEVENTMSG, child_pid, 0, &eventmsg),
              SyscallSucceeds());
  EXPECT_EQ(grandchild_pid, eventmsg);

  // Resume the child with PTRACE_SYSCALL again and expect it to enter
  // syscall-exit-stop for vfork() or clone(), either of which should return the
  // grandchild's PID from the syscall. Aside from PTRACE_O_TRACESYSGOOD,
  // syscall-stops are distinguished from signal-delivery-stop by
  // PTRACE_GETSIGINFO returning a siginfo for which si_code == SIGTRAP or
  // SIGTRAP|0x80.
  ASSERT_THAT(ptrace(PTRACE_SYSCALL, child_pid, 0, 0), SyscallSucceeds());
  ASSERT_THAT(waitpid(child_pid, &status, 0),
              SyscallSucceedsWithValue(child_pid));
  EXPECT_TRUE(WIFSTOPPED(status) && WSTOPSIG(status) == (SIGTRAP | 0x80))
      << " status " << status;
  ASSERT_THAT(ptrace(PTRACE_GETSIGINFO, child_pid, 0, &siginfo),
              SyscallSucceeds());
  EXPECT_TRUE(siginfo.si_code == SIGTRAP || siginfo.si_code == (SIGTRAP | 0x80))
      << "si_code = " << siginfo.si_code;
#ifdef __x86_64__
  {
    struct user_regs_struct regs = {};
    ASSERT_THAT(ptrace(PTRACE_GETREGS, child_pid, 0, &regs), SyscallSucceeds());
    EXPECT_TRUE(regs.orig_rax == SYS_vfork || regs.orig_rax == SYS_clone)
        << "orig_rax = " << regs.orig_rax;
    EXPECT_EQ(grandchild_pid, regs.rax);
  }
#endif  // defined(__x86_64__)

  // After this point, the child will be making wait4 syscalls that will be
  // interrupted by saving, so saving is not permitted. Note that this is
  // explicitly released below once the grandchild exits.
  DisableSave ds;

  // Resume the child with PTRACE_SYSCALL again and expect it to enter
  // syscall-enter-stop for wait4().
  ASSERT_THAT(ptrace(PTRACE_SYSCALL, child_pid, 0, 0), SyscallSucceeds());
  ASSERT_THAT(waitpid(child_pid, &status, 0),
              SyscallSucceedsWithValue(child_pid));
  EXPECT_TRUE(WIFSTOPPED(status) && WSTOPSIG(status) == (SIGTRAP | 0x80))
      << " status " << status;
  ASSERT_THAT(ptrace(PTRACE_GETSIGINFO, child_pid, 0, &siginfo),
              SyscallSucceeds());
  EXPECT_TRUE(siginfo.si_code == SIGTRAP || siginfo.si_code == (SIGTRAP | 0x80))
      << "si_code = " << siginfo.si_code;
#ifdef __x86_64__
  {
    EXPECT_THAT(ptrace(PTRACE_PEEKUSER, child_pid,
                       offsetof(struct user_regs_struct, orig_rax), 0),
                SyscallSucceedsWithValue(SYS_wait4));
  }
#endif  // defined(__x86_64__)

  // Resume the child with PTRACE_SYSCALL again. Since the grandchild is
  // waiting for the tracer (us) to acknowledge its exit first, wait4 should
  // block.
  ASSERT_THAT(ptrace(PTRACE_SYSCALL, child_pid, 0, 0), SyscallSucceeds());
  absl::SleepFor(absl::Seconds(1));
  ASSERT_THAT(waitpid(child_pid, &status, WNOHANG),
              SyscallSucceedsWithValue(0));

  // Acknowledge the grandchild's exit.
  ASSERT_THAT(waitpid(grandchild_pid, &status, 0),
              SyscallSucceedsWithValue(grandchild_pid));
  ds.reset();

  // Now the child should enter syscall-exit-stop for wait4, returning with the
  // grandchild's PID.
  ASSERT_THAT(waitpid(child_pid, &status, 0),
              SyscallSucceedsWithValue(child_pid));
  EXPECT_TRUE(WIFSTOPPED(status) && WSTOPSIG(status) == (SIGTRAP | 0x80))
      << " status " << status;
#ifdef __x86_64__
  {
    struct user_regs_struct regs = {};
    ASSERT_THAT(ptrace(PTRACE_GETREGS, child_pid, 0, &regs), SyscallSucceeds());
    EXPECT_EQ(SYS_wait4, regs.orig_rax);
    EXPECT_EQ(grandchild_pid, regs.rax);
  }
#endif  // defined(__x86_64__)

  // Detach from the child and wait for it to exit.
  ASSERT_THAT(ptrace(PTRACE_DETACH, child_pid, 0, 0), SyscallSucceeds());
  ASSERT_THAT(waitpid(child_pid, &status, 0),
              SyscallSucceedsWithValue(child_pid));
  EXPECT_TRUE(WIFEXITED(status) && WEXITSTATUS(status) == 0)
      << " status " << status;
}

// These tests requires knowledge of architecture-specific syscall convention.
#ifdef __x86_64__
TEST(PtraceTest, Sysemu_PokeUser) {
  constexpr int kSysemuHelperFirstExitCode = 126;
  constexpr uint64_t kSysemuInjectedExitGroupReturn = 42;

  pid_t const child_pid = fork();
  if (child_pid == 0) {
    // In child process.

    // Enable tracing, then raise SIGSTOP and expect our parent to suppress it.
    TEST_PCHECK(ptrace(PTRACE_TRACEME, 0, 0, 0) == 0);
    RaiseSignal(SIGSTOP);

    // Try to exit_group, expecting the tracer to skip the syscall and set its
    // own return value.
    int const rv = syscall(SYS_exit_group, kSysemuHelperFirstExitCode);
    TEST_PCHECK_MSG(rv == kSysemuInjectedExitGroupReturn,
                    "exit_group returned incorrect value");

    _exit(0);
  }
  // In parent process.
  ASSERT_THAT(child_pid, SyscallSucceeds());

  // Wait for the child to send itself SIGSTOP and enter signal-delivery-stop.
  int status;
  ASSERT_THAT(waitpid(child_pid, &status, 0),
              SyscallSucceedsWithValue(child_pid));
  EXPECT_TRUE(WIFSTOPPED(status) && WSTOPSIG(status) == SIGSTOP)
      << " status " << status;

  // Suppress the SIGSTOP and wait for the child to enter syscall-enter-stop
  // for its first exit_group syscall. glibc doesn't necessarily define
  // PTRACE_SYSEMU.
  constexpr auto kPtraceSysemu = static_cast<__ptrace_request>(31);
  ASSERT_THAT(ptrace(kPtraceSysemu, child_pid, 0, 0), SyscallSucceeds());
  ASSERT_THAT(waitpid(child_pid, &status, 0),
              SyscallSucceedsWithValue(child_pid));
  EXPECT_TRUE(WIFSTOPPED(status) && WSTOPSIG(status) == SIGTRAP)
      << " status " << status;

  struct user_regs_struct regs = {};
  ASSERT_THAT(ptrace(PTRACE_GETREGS, child_pid, 0, &regs), SyscallSucceeds());
  EXPECT_EQ(SYS_exit_group, regs.orig_rax);
  EXPECT_EQ(-ENOSYS, regs.rax);
  EXPECT_EQ(kSysemuHelperFirstExitCode, regs.rdi);

  // Replace the exit_group return value, then resume the child, which should
  // automatically skip the syscall.
  ASSERT_THAT(
      ptrace(PTRACE_POKEUSER, child_pid, offsetof(struct user_regs_struct, rax),
             kSysemuInjectedExitGroupReturn),
      SyscallSucceeds());
  ASSERT_THAT(ptrace(PTRACE_DETACH, child_pid, 0, 0), SyscallSucceeds());

  // The child should validate the injected return value and then exit normally.
  ASSERT_THAT(waitpid(child_pid, &status, 0),
              SyscallSucceedsWithValue(child_pid));
  EXPECT_TRUE(WIFEXITED(status) && WEXITSTATUS(status) == 0)
      << " status " << status;
}

// This test also cares about syscall-exit-stop.
TEST(PtraceTest, ERESTART_NoRandomSave) {
  constexpr int kSigno = SIGUSR1;

  pid_t const child_pid = fork();
  if (child_pid == 0) {
    // In child process.

    // Ignore, but unblock, kSigno.
    struct sigaction sa = {};
    sa.sa_handler = SIG_IGN;
    TEST_PCHECK(sigfillset(&sa.sa_mask) == 0);
    TEST_PCHECK(sigaction(kSigno, &sa, nullptr) == 0);
    MaybeSave();
    TEST_PCHECK(sigprocmask(SIG_UNBLOCK, &sa.sa_mask, nullptr) == 0);
    MaybeSave();

    // Enable tracing, then raise SIGSTOP and expect our parent to suppress it.
    TEST_PCHECK(ptrace(PTRACE_TRACEME, 0, 0, 0) == 0);
    RaiseSignal(SIGSTOP);

    // Invoke the pause syscall, which normally should not return until we
    // receive a signal that "either terminates the process or causes the
    // invocation of a signal-catching function".
    pause();

    _exit(0);
  }
  ASSERT_THAT(child_pid, SyscallSucceeds());

  // Wait for the child to send itself SIGSTOP and enter signal-delivery-stop.
  int status;
  ASSERT_THAT(waitpid(child_pid, &status, 0),
              SyscallSucceedsWithValue(child_pid));
  EXPECT_TRUE(WIFSTOPPED(status) && WSTOPSIG(status) == SIGSTOP)
      << " status " << status;

  // After this point, the child's pause syscall will be interrupted by saving,
  // so saving is not permitted. Note that this is explicitly released below
  // once the child is stopped.
  DisableSave ds;

  // Suppress the SIGSTOP and wait for the child to enter syscall-enter-stop for
  // its pause syscall.
  ASSERT_THAT(ptrace(PTRACE_SYSCALL, child_pid, 0, 0), SyscallSucceeds());
  ASSERT_THAT(waitpid(child_pid, &status, 0),
              SyscallSucceedsWithValue(child_pid));
  EXPECT_TRUE(WIFSTOPPED(status) && WSTOPSIG(status) == SIGTRAP)
      << " status " << status;

  struct user_regs_struct regs = {};
  ASSERT_THAT(ptrace(PTRACE_GETREGS, child_pid, 0, &regs), SyscallSucceeds());
  EXPECT_EQ(SYS_pause, regs.orig_rax);
  EXPECT_EQ(-ENOSYS, regs.rax);

  // Resume the child with PTRACE_SYSCALL and expect it to block in the pause
  // syscall.
  ASSERT_THAT(ptrace(PTRACE_SYSCALL, child_pid, 0, 0), SyscallSucceeds());
  absl::SleepFor(absl::Seconds(1));
  ASSERT_THAT(waitpid(child_pid, &status, WNOHANG),
              SyscallSucceedsWithValue(0));

  // Send the child kSigno, causing it to return ERESTARTNOHAND and enter
  // syscall-exit-stop from the pause syscall.
  constexpr int ERESTARTNOHAND = 514;
  ASSERT_THAT(kill(child_pid, kSigno), SyscallSucceeds());
  ASSERT_THAT(waitpid(child_pid, &status, 0),
              SyscallSucceedsWithValue(child_pid));
  EXPECT_TRUE(WIFSTOPPED(status) && WSTOPSIG(status) == SIGTRAP)
      << " status " << status;
  ds.reset();

  ASSERT_THAT(ptrace(PTRACE_GETREGS, child_pid, 0, &regs), SyscallSucceeds());
  EXPECT_EQ(SYS_pause, regs.orig_rax);
  EXPECT_EQ(-ERESTARTNOHAND, regs.rax);

  // Replace the return value from pause with 0, causing pause to not be
  // restarted despite kSigno being ignored.
  ASSERT_THAT(ptrace(PTRACE_POKEUSER, child_pid,
                     offsetof(struct user_regs_struct, rax), 0),
              SyscallSucceeds());

  // Detach from the child and wait for it to exit.
  ASSERT_THAT(ptrace(PTRACE_DETACH, child_pid, 0, 0), SyscallSucceeds());
  ASSERT_THAT(waitpid(child_pid, &status, 0),
              SyscallSucceedsWithValue(child_pid));
  EXPECT_TRUE(WIFEXITED(status) && WEXITSTATUS(status) == 0)
      << " status " << status;
}
#endif  // defined(__x86_64__)

}  // namespace

}  // namespace testing
}  // namespace gvisor

int main(int argc, char** argv) {
  gvisor::testing::TestInit(&argc, &argv);

  if (FLAGS_ptrace_test_execve_child) {
    gvisor::testing::RunExecveChild();
  }

  return RUN_ALL_TESTS();
}