1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "test/syscalls/linux/ip_socket_test_util.h"
#include <net/if.h>
#include <netinet/in.h>
#include <sys/ioctl.h>
#include <sys/socket.h>
#include <cstring>
namespace gvisor {
namespace testing {
uint32_t IPFromInetSockaddr(const struct sockaddr* addr) {
auto* in_addr = reinterpret_cast<const struct sockaddr_in*>(addr);
return in_addr->sin_addr.s_addr;
}
uint16_t PortFromInetSockaddr(const struct sockaddr* addr) {
auto* in_addr = reinterpret_cast<const struct sockaddr_in*>(addr);
return ntohs(in_addr->sin_port);
}
PosixErrorOr<int> InterfaceIndex(std::string name) {
// TODO(igudger): Consider using netlink.
ifreq req = {};
memcpy(req.ifr_name, name.c_str(), name.size());
ASSIGN_OR_RETURN_ERRNO(auto sock, Socket(AF_INET, SOCK_DGRAM, 0));
RETURN_ERROR_IF_SYSCALL_FAIL(ioctl(sock.get(), SIOCGIFINDEX, &req));
return req.ifr_ifindex;
}
namespace {
std::string DescribeSocketType(int type) {
return absl::StrCat(((type & SOCK_NONBLOCK) != 0) ? "non-blocking " : "",
((type & SOCK_CLOEXEC) != 0) ? "close-on-exec " : "");
}
} // namespace
SocketPairKind IPv6TCPAcceptBindSocketPair(int type) {
std::string description =
absl::StrCat(DescribeSocketType(type), "connected IPv6 TCP socket");
return SocketPairKind{
description, AF_INET6, type | SOCK_STREAM, IPPROTO_TCP,
TCPAcceptBindSocketPairCreator(AF_INET6, type | SOCK_STREAM, 0,
/* dual_stack = */ false)};
}
SocketPairKind IPv4TCPAcceptBindSocketPair(int type) {
std::string description =
absl::StrCat(DescribeSocketType(type), "connected IPv4 TCP socket");
return SocketPairKind{
description, AF_INET, type | SOCK_STREAM, IPPROTO_TCP,
TCPAcceptBindSocketPairCreator(AF_INET, type | SOCK_STREAM, 0,
/* dual_stack = */ false)};
}
SocketPairKind DualStackTCPAcceptBindSocketPair(int type) {
std::string description =
absl::StrCat(DescribeSocketType(type), "connected dual stack TCP socket");
return SocketPairKind{
description, AF_INET6, type | SOCK_STREAM, IPPROTO_TCP,
TCPAcceptBindSocketPairCreator(AF_INET6, type | SOCK_STREAM, 0,
/* dual_stack = */ true)};
}
SocketPairKind IPv6UDPBidirectionalBindSocketPair(int type) {
std::string description =
absl::StrCat(DescribeSocketType(type), "connected IPv6 UDP socket");
return SocketPairKind{
description, AF_INET6, type | SOCK_DGRAM, IPPROTO_UDP,
UDPBidirectionalBindSocketPairCreator(AF_INET6, type | SOCK_DGRAM, 0,
/* dual_stack = */ false)};
}
SocketPairKind IPv4UDPBidirectionalBindSocketPair(int type) {
std::string description =
absl::StrCat(DescribeSocketType(type), "connected IPv4 UDP socket");
return SocketPairKind{
description, AF_INET, type | SOCK_DGRAM, IPPROTO_UDP,
UDPBidirectionalBindSocketPairCreator(AF_INET, type | SOCK_DGRAM, 0,
/* dual_stack = */ false)};
}
SocketPairKind DualStackUDPBidirectionalBindSocketPair(int type) {
std::string description =
absl::StrCat(DescribeSocketType(type), "connected dual stack UDP socket");
return SocketPairKind{
description, AF_INET6, type | SOCK_DGRAM, IPPROTO_UDP,
UDPBidirectionalBindSocketPairCreator(AF_INET6, type | SOCK_DGRAM, 0,
/* dual_stack = */ true)};
}
SocketPairKind IPv4UDPUnboundSocketPair(int type) {
std::string description =
absl::StrCat(DescribeSocketType(type), "IPv4 UDP socket");
return SocketPairKind{
description, AF_INET, type | SOCK_DGRAM, IPPROTO_UDP,
UDPUnboundSocketPairCreator(AF_INET, type | SOCK_DGRAM, 0,
/* dual_stack = */ false)};
}
SocketKind IPv4UDPUnboundSocket(int type) {
std::string description =
absl::StrCat(DescribeSocketType(type), "IPv4 UDP socket");
return SocketKind{
description, AF_INET, type | SOCK_DGRAM, IPPROTO_UDP,
UnboundSocketCreator(AF_INET, type | SOCK_DGRAM, IPPROTO_UDP)};
}
SocketKind IPv6UDPUnboundSocket(int type) {
std::string description =
absl::StrCat(DescribeSocketType(type), "IPv6 UDP socket");
return SocketKind{
description, AF_INET6, type | SOCK_DGRAM, IPPROTO_UDP,
UnboundSocketCreator(AF_INET6, type | SOCK_DGRAM, IPPROTO_UDP)};
}
SocketKind IPv4TCPUnboundSocket(int type) {
std::string description =
absl::StrCat(DescribeSocketType(type), "IPv4 TCP socket");
return SocketKind{
description, AF_INET, type | SOCK_STREAM, IPPROTO_TCP,
UnboundSocketCreator(AF_INET, type | SOCK_STREAM, IPPROTO_TCP)};
}
SocketKind IPv6TCPUnboundSocket(int type) {
std::string description =
absl::StrCat(DescribeSocketType(type), "IPv6 TCP socket");
return SocketKind{
description, AF_INET6, type | SOCK_STREAM, IPPROTO_TCP,
UnboundSocketCreator(AF_INET6, type | SOCK_STREAM, IPPROTO_TCP)};
}
PosixError IfAddrHelper::Load() {
Release();
RETURN_ERROR_IF_SYSCALL_FAIL(getifaddrs(&ifaddr_));
return PosixError(0);
}
void IfAddrHelper::Release() {
if (ifaddr_) {
freeifaddrs(ifaddr_);
}
ifaddr_ = nullptr;
}
std::vector<std::string> IfAddrHelper::InterfaceList(int family) {
std::vector<std::string> names;
for (auto ifa = ifaddr_; ifa != NULL; ifa = ifa->ifa_next) {
if (ifa->ifa_addr == NULL || ifa->ifa_addr->sa_family != family) {
continue;
}
names.emplace(names.end(), ifa->ifa_name);
}
return names;
}
sockaddr* IfAddrHelper::GetAddr(int family, std::string name) {
for (auto ifa = ifaddr_; ifa != NULL; ifa = ifa->ifa_next) {
if (ifa->ifa_addr == NULL || ifa->ifa_addr->sa_family != family) {
continue;
}
if (name == ifa->ifa_name) {
return ifa->ifa_addr;
}
}
return nullptr;
}
PosixErrorOr<int> IfAddrHelper::GetIndex(std::string name) {
return InterfaceIndex(name);
}
std::string GetAddr4Str(const in_addr* a) {
char str[INET_ADDRSTRLEN];
inet_ntop(AF_INET, a, str, sizeof(str));
return std::string(str);
}
std::string GetAddr6Str(const in6_addr* a) {
char str[INET6_ADDRSTRLEN];
inet_ntop(AF_INET6, a, str, sizeof(str));
return std::string(str);
}
std::string GetAddrStr(const sockaddr* a) {
if (a->sa_family == AF_INET) {
auto src = &(reinterpret_cast<const sockaddr_in*>(a)->sin_addr);
return GetAddr4Str(src);
} else if (a->sa_family == AF_INET6) {
auto src = &(reinterpret_cast<const sockaddr_in6*>(a)->sin6_addr);
return GetAddr6Str(src);
}
return std::string("<invalid>");
}
} // namespace testing
} // namespace gvisor
|