1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <time.h>
#include <atomic>
#include <utility>
#include "gtest/gtest.h"
#include "absl/time/time.h"
#include "test/util/cleanup.h"
#include "test/util/posix_error.h"
#include "test/util/signal_util.h"
#include "test/util/test_util.h"
#include "test/util/thread_util.h"
#include "test/util/timer_util.h"
namespace gvisor {
namespace testing {
namespace {
// sys_clock_nanosleep is defined because the glibc clock_nanosleep returns
// error numbers directly and does not set errno. This makes our Syscall
// matchers look a little weird when expecting failure:
// "SyscallSucceedsWithValue(ERRNO)".
int sys_clock_nanosleep(clockid_t clkid, int flags,
const struct timespec* request,
struct timespec* remain) {
return syscall(SYS_clock_nanosleep, clkid, flags, request, remain);
}
PosixErrorOr<absl::Time> GetTime(clockid_t clk) {
struct timespec ts = {};
int rc = clock_gettime(clk, &ts);
MaybeSave();
if (rc < 0) {
return PosixError(errno, "clock_gettime");
}
return absl::TimeFromTimespec(ts);
}
class WallClockNanosleepTest : public ::testing::TestWithParam<clockid_t> {};
TEST_P(WallClockNanosleepTest, InvalidValues) {
const struct timespec invalid[] = {
{.tv_sec = -1, .tv_nsec = -1}, {.tv_sec = 0, .tv_nsec = INT32_MIN},
{.tv_sec = 0, .tv_nsec = INT32_MAX}, {.tv_sec = 0, .tv_nsec = -1},
{.tv_sec = -1, .tv_nsec = 0},
};
for (auto const ts : invalid) {
EXPECT_THAT(sys_clock_nanosleep(GetParam(), 0, &ts, nullptr),
SyscallFailsWithErrno(EINVAL));
}
}
TEST_P(WallClockNanosleepTest, SleepOneSecond) {
absl::Duration const duration = absl::Seconds(1);
struct timespec dur = absl::ToTimespec(duration);
absl::Time const before = ASSERT_NO_ERRNO_AND_VALUE(GetTime(GetParam()));
EXPECT_THAT(RetryEINTR(sys_clock_nanosleep)(GetParam(), 0, &dur, &dur),
SyscallSucceeds());
absl::Time const after = ASSERT_NO_ERRNO_AND_VALUE(GetTime(GetParam()));
EXPECT_GE(after - before, duration);
}
TEST_P(WallClockNanosleepTest, InterruptedNanosleep) {
absl::Duration const duration = absl::Seconds(60);
struct timespec dur = absl::ToTimespec(duration);
// Install no-op signal handler for SIGALRM.
struct sigaction sa = {};
sigfillset(&sa.sa_mask);
sa.sa_handler = +[](int signo) {};
auto const cleanup_sa =
ASSERT_NO_ERRNO_AND_VALUE(ScopedSigaction(SIGALRM, sa));
// Measure time since setting the alarm, since the alarm will interrupt the
// sleep and hence determine how long we sleep.
absl::Time const before = ASSERT_NO_ERRNO_AND_VALUE(GetTime(GetParam()));
// Set an alarm to go off while sleeping.
struct itimerval timer = {};
timer.it_value.tv_sec = 1;
timer.it_value.tv_usec = 0;
timer.it_interval.tv_sec = 1;
timer.it_interval.tv_usec = 0;
auto const cleanup =
ASSERT_NO_ERRNO_AND_VALUE(ScopedItimer(ITIMER_REAL, timer));
EXPECT_THAT(sys_clock_nanosleep(GetParam(), 0, &dur, &dur),
SyscallFailsWithErrno(EINTR));
absl::Time const after = ASSERT_NO_ERRNO_AND_VALUE(GetTime(GetParam()));
absl::Duration const remaining = absl::DurationFromTimespec(dur);
EXPECT_GE(after - before + remaining, duration);
}
TEST_P(WallClockNanosleepTest, SleepUntil) {
absl::Time const now = ASSERT_NO_ERRNO_AND_VALUE(GetTime(GetParam()));
absl::Time const until = now + absl::Seconds(2);
struct timespec ts = absl::ToTimespec(until);
EXPECT_THAT(
RetryEINTR(sys_clock_nanosleep)(GetParam(), TIMER_ABSTIME, &ts, nullptr),
SyscallSucceeds());
absl::Time const after = ASSERT_NO_ERRNO_AND_VALUE(GetTime(GetParam()));
EXPECT_GE(after, until);
}
INSTANTIATE_TEST_SUITE_P(Sleepers, WallClockNanosleepTest,
::testing::Values(CLOCK_REALTIME, CLOCK_MONOTONIC));
TEST(ClockNanosleepProcessTest, SleepFiveSeconds) {
absl::Duration const kDuration = absl::Seconds(5);
struct timespec dur = absl::ToTimespec(kDuration);
// Ensure that CLOCK_PROCESS_CPUTIME_ID advances.
std::atomic<bool> done(false);
ScopedThread t([&] {
while (!done.load()) {
}
});
auto const cleanup_done = Cleanup([&] { done.store(true); });
absl::Time const before =
ASSERT_NO_ERRNO_AND_VALUE(GetTime(CLOCK_PROCESS_CPUTIME_ID));
EXPECT_THAT(
RetryEINTR(sys_clock_nanosleep)(CLOCK_PROCESS_CPUTIME_ID, 0, &dur, &dur),
SyscallSucceeds());
absl::Time const after =
ASSERT_NO_ERRNO_AND_VALUE(GetTime(CLOCK_PROCESS_CPUTIME_ID));
EXPECT_GE(after - before, kDuration);
}
} // namespace
} // namespace testing
} // namespace gvisor
|