1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
|
// Copyright 2020 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <unistd.h>
#include "gtest/gtest.h"
#include "absl/synchronization/barrier.h"
#include "benchmark/benchmark.h"
#include "test/util/cleanup.h"
#include "test/util/file_descriptor.h"
#include "test/util/logging.h"
#include "test/util/test_util.h"
#include "test/util/thread_util.h"
namespace gvisor {
namespace testing {
namespace {
constexpr int kBusyMax = 250;
// Do some CPU-bound busy-work.
int busy(int max) {
// Prevent the compiler from optimizing this work away,
volatile int count = 0;
for (int i = 1; i < max; i++) {
for (int j = 2; j < i / 2; j++) {
if (i % j == 0) {
count++;
}
}
}
return count;
}
void BM_CPUBoundUniprocess(benchmark::State& state) {
for (auto _ : state) {
busy(kBusyMax);
}
}
BENCHMARK(BM_CPUBoundUniprocess);
void BM_CPUBoundAsymmetric(benchmark::State& state) {
const size_t max = state.max_iterations;
pid_t child = fork();
if (child == 0) {
for (int i = 0; i < max; i++) {
busy(kBusyMax);
}
_exit(0);
}
ASSERT_THAT(child, SyscallSucceeds());
ASSERT_TRUE(state.KeepRunningBatch(max));
int status;
EXPECT_THAT(RetryEINTR(waitpid)(child, &status, 0), SyscallSucceeds());
EXPECT_TRUE(WIFEXITED(status));
EXPECT_EQ(0, WEXITSTATUS(status));
ASSERT_FALSE(state.KeepRunning());
}
BENCHMARK(BM_CPUBoundAsymmetric)->UseRealTime();
void BM_CPUBoundSymmetric(benchmark::State& state) {
std::vector<pid_t> children;
auto child_cleanup = Cleanup([&] {
for (const pid_t child : children) {
int status;
EXPECT_THAT(RetryEINTR(waitpid)(child, &status, 0), SyscallSucceeds());
EXPECT_TRUE(WIFEXITED(status));
EXPECT_EQ(0, WEXITSTATUS(status));
}
ASSERT_FALSE(state.KeepRunning());
});
const int processes = state.range(0);
for (int i = 0; i < processes; i++) {
size_t cur = (state.max_iterations + (processes - 1)) / processes;
if ((state.iterations() + cur) >= state.max_iterations) {
cur = state.max_iterations - state.iterations();
}
pid_t child = fork();
if (child == 0) {
for (int i = 0; i < cur; i++) {
busy(kBusyMax);
}
_exit(0);
}
ASSERT_THAT(child, SyscallSucceeds());
if (cur > 0) {
// We can have a zero cur here, depending.
ASSERT_TRUE(state.KeepRunningBatch(cur));
}
children.push_back(child);
}
}
BENCHMARK(BM_CPUBoundSymmetric)->Range(2, 16)->UseRealTime();
// Child routine for ProcessSwitch/ThreadSwitch.
// Reads from readfd and writes the result to writefd.
void SwitchChild(int readfd, int writefd) {
while (1) {
char buf;
int ret = ReadFd(readfd, &buf, 1);
if (ret == 0) {
break;
}
TEST_CHECK_MSG(ret == 1, "read failed");
ret = WriteFd(writefd, &buf, 1);
if (ret == -1) {
TEST_CHECK_MSG(errno == EPIPE, "unexpected write failure");
break;
}
TEST_CHECK_MSG(ret == 1, "write failed");
}
}
// Send bytes in a loop through a series of pipes, each passing through a
// different process.
//
// Proc 0 Proc 1
// * ----------> *
// ^ Pipe 1 |
// | |
// | Pipe 0 | Pipe 2
// | |
// | |
// | Pipe 3 v
// * <---------- *
// Proc 3 Proc 2
//
// This exercises context switching through multiple processes.
void BM_ProcessSwitch(benchmark::State& state) {
// Code below assumes there are at least two processes.
const int num_processes = state.range(0);
ASSERT_GE(num_processes, 2);
std::vector<pid_t> children;
auto child_cleanup = Cleanup([&] {
for (const pid_t child : children) {
int status;
EXPECT_THAT(RetryEINTR(waitpid)(child, &status, 0), SyscallSucceeds());
EXPECT_TRUE(WIFEXITED(status));
EXPECT_EQ(0, WEXITSTATUS(status));
}
});
// Must come after children, as the FDs must be closed before the children
// will exit.
std::vector<FileDescriptor> read_fds;
std::vector<FileDescriptor> write_fds;
for (int i = 0; i < num_processes; i++) {
int fds[2];
ASSERT_THAT(pipe(fds), SyscallSucceeds());
read_fds.emplace_back(fds[0]);
write_fds.emplace_back(fds[1]);
}
// This process is one of the processes in the loop. It will be considered
// index 0.
for (int i = 1; i < num_processes; i++) {
// Read from current pipe index, write to next.
const int read_index = i;
const int read_fd = read_fds[read_index].get();
const int write_index = (i + 1) % num_processes;
const int write_fd = write_fds[write_index].get();
// std::vector isn't safe to use from the fork child.
FileDescriptor* read_array = read_fds.data();
FileDescriptor* write_array = write_fds.data();
pid_t child = fork();
if (!child) {
// Close all other FDs.
for (int j = 0; j < num_processes; j++) {
if (j != read_index) {
read_array[j].reset();
}
if (j != write_index) {
write_array[j].reset();
}
}
SwitchChild(read_fd, write_fd);
_exit(0);
}
ASSERT_THAT(child, SyscallSucceeds());
children.push_back(child);
}
// Read from current pipe index (0), write to next (1).
const int read_index = 0;
const int read_fd = read_fds[read_index].get();
const int write_index = 1;
const int write_fd = write_fds[write_index].get();
// Kick start the loop.
char buf = 'a';
ASSERT_THAT(WriteFd(write_fd, &buf, 1), SyscallSucceedsWithValue(1));
for (auto _ : state) {
ASSERT_THAT(ReadFd(read_fd, &buf, 1), SyscallSucceedsWithValue(1));
ASSERT_THAT(WriteFd(write_fd, &buf, 1), SyscallSucceedsWithValue(1));
}
}
BENCHMARK(BM_ProcessSwitch)->Range(2, 16)->UseRealTime();
// Equivalent to BM_ThreadSwitch using threads instead of processes.
void BM_ThreadSwitch(benchmark::State& state) {
// Code below assumes there are at least two threads.
const int num_threads = state.range(0);
ASSERT_GE(num_threads, 2);
// Must come after threads, as the FDs must be closed before the children
// will exit.
std::vector<std::unique_ptr<ScopedThread>> threads;
std::vector<FileDescriptor> read_fds;
std::vector<FileDescriptor> write_fds;
for (int i = 0; i < num_threads; i++) {
int fds[2];
ASSERT_THAT(pipe(fds), SyscallSucceeds());
read_fds.emplace_back(fds[0]);
write_fds.emplace_back(fds[1]);
}
// This thread is one of the threads in the loop. It will be considered
// index 0.
for (int i = 1; i < num_threads; i++) {
// Read from current pipe index, write to next.
//
// Transfer ownership of the FDs to the thread.
const int read_index = i;
const int read_fd = read_fds[read_index].release();
const int write_index = (i + 1) % num_threads;
const int write_fd = write_fds[write_index].release();
threads.emplace_back(std::make_unique<ScopedThread>([read_fd, write_fd] {
FileDescriptor read(read_fd);
FileDescriptor write(write_fd);
SwitchChild(read.get(), write.get());
}));
}
// Read from current pipe index (0), write to next (1).
const int read_index = 0;
const int read_fd = read_fds[read_index].get();
const int write_index = 1;
const int write_fd = write_fds[write_index].get();
// Kick start the loop.
char buf = 'a';
ASSERT_THAT(WriteFd(write_fd, &buf, 1), SyscallSucceedsWithValue(1));
for (auto _ : state) {
ASSERT_THAT(ReadFd(read_fd, &buf, 1), SyscallSucceedsWithValue(1));
ASSERT_THAT(WriteFd(write_fd, &buf, 1), SyscallSucceedsWithValue(1));
}
// The two FDs still owned by this thread are closed, causing the next thread
// to exit its loop and close its FDs, and so on until all threads exit.
}
BENCHMARK(BM_ThreadSwitch)->Range(2, 16)->UseRealTime();
void BM_ThreadStart(benchmark::State& state) {
const int num_threads = state.range(0);
for (auto _ : state) {
state.PauseTiming();
auto barrier = new absl::Barrier(num_threads + 1);
std::vector<std::unique_ptr<ScopedThread>> threads;
state.ResumeTiming();
for (size_t i = 0; i < num_threads; ++i) {
threads.emplace_back(std::make_unique<ScopedThread>([barrier] {
if (barrier->Block()) {
delete barrier;
}
}));
}
if (barrier->Block()) {
delete barrier;
}
state.PauseTiming();
for (const auto& thread : threads) {
thread->Join();
}
state.ResumeTiming();
}
}
BENCHMARK(BM_ThreadStart)->Range(1, 2048)->UseRealTime();
// Benchmark the complete fork + exit + wait.
void BM_ProcessLifecycle(benchmark::State& state) {
const int num_procs = state.range(0);
std::vector<pid_t> pids(num_procs);
for (auto _ : state) {
for (size_t i = 0; i < num_procs; ++i) {
int pid = fork();
if (pid == 0) {
_exit(0);
}
ASSERT_THAT(pid, SyscallSucceeds());
pids[i] = pid;
}
for (const int pid : pids) {
ASSERT_THAT(RetryEINTR(waitpid)(pid, nullptr, 0),
SyscallSucceedsWithValue(pid));
}
}
}
BENCHMARK(BM_ProcessLifecycle)->Range(1, 512)->UseRealTime();
} // namespace
} // namespace testing
} // namespace gvisor
|