1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
|
// Copyright 2020 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package testbench
import (
"fmt"
"reflect"
"github.com/google/go-cmp/cmp"
"github.com/google/go-cmp/cmp/cmpopts"
"github.com/imdario/mergo"
"gvisor.dev/gvisor/pkg/tcpip"
"gvisor.dev/gvisor/pkg/tcpip/header"
)
// Layer is the interface that all encapsulations must implement.
//
// A Layer is an encapsulation in a packet, such as TCP, IPv4, IPv6, etc. A
// Layer contains all the fields of the encapsulation. Each field is a pointer
// and may be nil.
type Layer interface {
// toBytes converts the Layer into bytes. In places where the Layer's field
// isn't nil, the value that is pointed to is used. When the field is nil, a
// reasonable default for the Layer is used. For example, "64" for IPv4 TTL
// and a calculated checksum for TCP or IP. Some layers require information
// from the previous or next layers in order to compute a default, such as
// TCP's checksum or Ethernet's type, so each Layer has a doubly-linked list
// to the layer's neighbors.
toBytes() ([]byte, error)
// match checks if the current Layer matches the provided Layer. If either
// Layer has a nil in a given field, that field is considered matching.
// Otherwise, the values pointed to by the fields must match.
match(Layer) bool
// length in bytes of the current encapsulation
length() int
// next gets a pointer to the encapsulated Layer.
next() Layer
// prev gets a pointer to the Layer encapsulating this one.
prev() Layer
// setNext sets the pointer to the encapsulated Layer.
setNext(Layer)
// setPrev sets the pointer to the Layer encapsulating this one.
setPrev(Layer)
}
// LayerBase is the common elements of all layers.
type LayerBase struct {
nextLayer Layer
prevLayer Layer
}
func (lb *LayerBase) next() Layer {
return lb.nextLayer
}
func (lb *LayerBase) prev() Layer {
return lb.prevLayer
}
func (lb *LayerBase) setNext(l Layer) {
lb.nextLayer = l
}
func (lb *LayerBase) setPrev(l Layer) {
lb.prevLayer = l
}
func equalLayer(x, y Layer) bool {
opt := cmp.FilterValues(func(x, y interface{}) bool {
if reflect.ValueOf(x).Kind() == reflect.Ptr && reflect.ValueOf(x).IsNil() {
return true
}
if reflect.ValueOf(y).Kind() == reflect.Ptr && reflect.ValueOf(y).IsNil() {
return true
}
return false
}, cmp.Ignore())
return cmp.Equal(x, y, opt, cmpopts.IgnoreUnexported(LayerBase{}))
}
// Ether can construct and match the ethernet encapsulation.
type Ether struct {
LayerBase
SrcAddr *tcpip.LinkAddress
DstAddr *tcpip.LinkAddress
Type *tcpip.NetworkProtocolNumber
}
func (l *Ether) toBytes() ([]byte, error) {
b := make([]byte, header.EthernetMinimumSize)
h := header.Ethernet(b)
fields := &header.EthernetFields{}
if l.SrcAddr != nil {
fields.SrcAddr = *l.SrcAddr
}
if l.DstAddr != nil {
fields.DstAddr = *l.DstAddr
}
if l.Type != nil {
fields.Type = *l.Type
} else {
switch n := l.next().(type) {
case *IPv4:
fields.Type = header.IPv4ProtocolNumber
default:
// TODO(b/150301488): Support more protocols, like IPv6.
return nil, fmt.Errorf("can't deduce the ethernet header's next protocol: %d", n)
}
}
h.Encode(fields)
return h, nil
}
// LinkAddress is a helper routine that allocates a new tcpip.LinkAddress value
// to store v and returns a pointer to it.
func LinkAddress(v tcpip.LinkAddress) *tcpip.LinkAddress {
return &v
}
// NetworkProtocolNumber is a helper routine that allocates a new
// tcpip.NetworkProtocolNumber value to store v and returns a pointer to it.
func NetworkProtocolNumber(v tcpip.NetworkProtocolNumber) *tcpip.NetworkProtocolNumber {
return &v
}
// ParseEther parses the bytes assuming that they start with an ethernet header
// and continues parsing further encapsulations.
func ParseEther(b []byte) (Layers, error) {
h := header.Ethernet(b)
ether := Ether{
SrcAddr: LinkAddress(h.SourceAddress()),
DstAddr: LinkAddress(h.DestinationAddress()),
Type: NetworkProtocolNumber(h.Type()),
}
layers := Layers{ðer}
switch h.Type() {
case header.IPv4ProtocolNumber:
moreLayers, err := ParseIPv4(b[ether.length():])
if err != nil {
return nil, err
}
return append(layers, moreLayers...), nil
default:
// TODO(b/150301488): Support more protocols, like IPv6.
return nil, fmt.Errorf("can't deduce the ethernet header's next protocol: %v", b)
}
}
func (l *Ether) match(other Layer) bool {
return equalLayer(l, other)
}
func (l *Ether) length() int {
return header.EthernetMinimumSize
}
// IPv4 can construct and match the ethernet excapulation.
type IPv4 struct {
LayerBase
IHL *uint8
TOS *uint8
TotalLength *uint16
ID *uint16
Flags *uint8
FragmentOffset *uint16
TTL *uint8
Protocol *uint8
Checksum *uint16
SrcAddr *tcpip.Address
DstAddr *tcpip.Address
}
func (l *IPv4) toBytes() ([]byte, error) {
b := make([]byte, header.IPv4MinimumSize)
h := header.IPv4(b)
fields := &header.IPv4Fields{
IHL: 20,
TOS: 0,
TotalLength: 0,
ID: 0,
Flags: 0,
FragmentOffset: 0,
TTL: 64,
Protocol: 0,
Checksum: 0,
SrcAddr: tcpip.Address(""),
DstAddr: tcpip.Address(""),
}
if l.TOS != nil {
fields.TOS = *l.TOS
}
if l.TotalLength != nil {
fields.TotalLength = *l.TotalLength
} else {
fields.TotalLength = uint16(l.length())
current := l.next()
for current != nil {
fields.TotalLength += uint16(current.length())
current = current.next()
}
}
if l.ID != nil {
fields.ID = *l.ID
}
if l.Flags != nil {
fields.Flags = *l.Flags
}
if l.FragmentOffset != nil {
fields.FragmentOffset = *l.FragmentOffset
}
if l.TTL != nil {
fields.TTL = *l.TTL
}
if l.Protocol != nil {
fields.Protocol = *l.Protocol
} else {
switch n := l.next().(type) {
case *TCP:
fields.Protocol = uint8(header.TCPProtocolNumber)
default:
// TODO(b/150301488): Support more protocols, like UDP.
return nil, fmt.Errorf("can't deduce the ip header's next protocol: %+v", n)
}
}
if l.SrcAddr != nil {
fields.SrcAddr = *l.SrcAddr
}
if l.DstAddr != nil {
fields.DstAddr = *l.DstAddr
}
if l.Checksum != nil {
fields.Checksum = *l.Checksum
}
h.Encode(fields)
if l.Checksum == nil {
h.SetChecksum(^h.CalculateChecksum())
}
return h, nil
}
// Uint16 is a helper routine that allocates a new
// uint16 value to store v and returns a pointer to it.
func Uint16(v uint16) *uint16 {
return &v
}
// Uint8 is a helper routine that allocates a new
// uint8 value to store v and returns a pointer to it.
func Uint8(v uint8) *uint8 {
return &v
}
// Address is a helper routine that allocates a new tcpip.Address value to store
// v and returns a pointer to it.
func Address(v tcpip.Address) *tcpip.Address {
return &v
}
// ParseIPv4 parses the bytes assuming that they start with an ipv4 header and
// continues parsing further encapsulations.
func ParseIPv4(b []byte) (Layers, error) {
h := header.IPv4(b)
tos, _ := h.TOS()
ipv4 := IPv4{
IHL: Uint8(h.HeaderLength()),
TOS: &tos,
TotalLength: Uint16(h.TotalLength()),
ID: Uint16(h.ID()),
Flags: Uint8(h.Flags()),
FragmentOffset: Uint16(h.FragmentOffset()),
TTL: Uint8(h.TTL()),
Protocol: Uint8(h.Protocol()),
Checksum: Uint16(h.Checksum()),
SrcAddr: Address(h.SourceAddress()),
DstAddr: Address(h.DestinationAddress()),
}
layers := Layers{&ipv4}
switch h.Protocol() {
case uint8(header.TCPProtocolNumber):
moreLayers, err := ParseTCP(b[ipv4.length():])
if err != nil {
return nil, err
}
return append(layers, moreLayers...), nil
}
return nil, fmt.Errorf("can't deduce the ethernet header's next protocol: %d", h.Protocol())
}
func (l *IPv4) match(other Layer) bool {
return equalLayer(l, other)
}
func (l *IPv4) length() int {
if l.IHL == nil {
return header.IPv4MinimumSize
}
return int(*l.IHL)
}
// TCP can construct and match the TCP excapulation.
type TCP struct {
LayerBase
SrcPort *uint16
DstPort *uint16
SeqNum *uint32
AckNum *uint32
DataOffset *uint8
Flags *uint8
WindowSize *uint16
Checksum *uint16
UrgentPointer *uint16
}
func (l *TCP) toBytes() ([]byte, error) {
b := make([]byte, header.TCPMinimumSize)
h := header.TCP(b)
if l.SrcPort != nil {
h.SetSourcePort(*l.SrcPort)
}
if l.DstPort != nil {
h.SetDestinationPort(*l.DstPort)
}
if l.SeqNum != nil {
h.SetSequenceNumber(*l.SeqNum)
}
if l.AckNum != nil {
h.SetAckNumber(*l.AckNum)
}
if l.DataOffset != nil {
h.SetDataOffset(*l.DataOffset)
}
if l.Flags != nil {
h.SetFlags(*l.Flags)
}
if l.WindowSize != nil {
h.SetWindowSize(*l.WindowSize)
}
if l.UrgentPointer != nil {
h.SetUrgentPoiner(*l.UrgentPointer)
}
if l.Checksum != nil {
h.SetChecksum(*l.Checksum)
return h, nil
}
if err := setChecksum(&h, l); err != nil {
return nil, err
}
return h, nil
}
// setChecksum calculates the checksum of the TCP header and sets it in h.
func setChecksum(h *header.TCP, tcp *TCP) error {
h.SetChecksum(0)
tcpLength := uint16(tcp.length())
current := tcp.next()
for current != nil {
tcpLength += uint16(current.length())
current = current.next()
}
var xsum uint16
switch s := tcp.prev().(type) {
case *IPv4:
xsum = header.PseudoHeaderChecksum(header.TCPProtocolNumber, *s.SrcAddr, *s.DstAddr, tcpLength)
default:
// TODO(b/150301488): Support more protocols, like IPv6.
return fmt.Errorf("can't get src and dst addr from previous layer")
}
current = tcp.next()
for current != nil {
payload, err := current.toBytes()
if err != nil {
return fmt.Errorf("can't get bytes for next header: %s", payload)
}
xsum = header.Checksum(payload, xsum)
current = current.next()
}
h.SetChecksum(^h.CalculateChecksum(xsum))
return nil
}
// Uint32 is a helper routine that allocates a new
// uint32 value to store v and returns a pointer to it.
func Uint32(v uint32) *uint32 {
return &v
}
// ParseTCP parses the bytes assuming that they start with a tcp header and
// continues parsing further encapsulations.
func ParseTCP(b []byte) (Layers, error) {
h := header.TCP(b)
tcp := TCP{
SrcPort: Uint16(h.SourcePort()),
DstPort: Uint16(h.DestinationPort()),
SeqNum: Uint32(h.SequenceNumber()),
AckNum: Uint32(h.AckNumber()),
DataOffset: Uint8(h.DataOffset()),
Flags: Uint8(h.Flags()),
WindowSize: Uint16(h.WindowSize()),
Checksum: Uint16(h.Checksum()),
UrgentPointer: Uint16(h.UrgentPointer()),
}
layers := Layers{&tcp}
moreLayers, err := ParsePayload(b[tcp.length():])
if err != nil {
return nil, err
}
return append(layers, moreLayers...), nil
}
func (l *TCP) match(other Layer) bool {
return equalLayer(l, other)
}
func (l *TCP) length() int {
if l.DataOffset == nil {
return header.TCPMinimumSize
}
return int(*l.DataOffset)
}
// merge overrides the values in l with the values from other but only in fields
// where the value is not nil.
func (l *TCP) merge(other TCP) error {
return mergo.Merge(l, other, mergo.WithOverride)
}
// Payload has bytes beyond OSI layer 4.
type Payload struct {
LayerBase
Bytes []byte
}
// ParsePayload parses the bytes assuming that they start with a payload and
// continue to the end. There can be no further encapsulations.
func ParsePayload(b []byte) (Layers, error) {
payload := Payload{
Bytes: b,
}
return Layers{&payload}, nil
}
func (l *Payload) toBytes() ([]byte, error) {
return l.Bytes, nil
}
func (l *Payload) match(other Layer) bool {
return equalLayer(l, other)
}
func (l *Payload) length() int {
return len(l.Bytes)
}
// Layers is an array of Layer and supports similar functions to Layer.
type Layers []Layer
func (ls *Layers) toBytes() ([]byte, error) {
for i, l := range *ls {
if i > 0 {
l.setPrev((*ls)[i-1])
}
if i+1 < len(*ls) {
l.setNext((*ls)[i+1])
}
}
outBytes := []byte{}
for _, l := range *ls {
layerBytes, err := l.toBytes()
if err != nil {
return nil, err
}
outBytes = append(outBytes, layerBytes...)
}
return outBytes, nil
}
func (ls *Layers) match(other Layers) bool {
if len(*ls) > len(other) {
return false
}
for i := 0; i < len(*ls); i++ {
if !equalLayer((*ls)[i], other[i]) {
return false
}
}
return true
}
|