1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package container
import (
"bytes"
"fmt"
"io"
"os"
"path/filepath"
"sync"
"syscall"
"testing"
"time"
"github.com/kr/pty"
"golang.org/x/sys/unix"
"gvisor.googlesource.com/gvisor/pkg/sentry/control"
"gvisor.googlesource.com/gvisor/pkg/unet"
"gvisor.googlesource.com/gvisor/pkg/urpc"
"gvisor.googlesource.com/gvisor/runsc/test/testutil"
)
// socketPath creates a path inside bundleDir and ensures that the returned
// path is under 108 charactors (the unix socket path length limit),
// relativizing the path if necessary.
func socketPath(bundleDir string) (string, error) {
path := filepath.Join(bundleDir, "socket")
cwd, err := os.Getwd()
if err != nil {
return "", fmt.Errorf("error getting cwd: %v", err)
}
relPath, err := filepath.Rel(cwd, path)
if err != nil {
return "", fmt.Errorf("error getting relative path for %q from cwd %q: %v", path, cwd, err)
}
if len(path) > len(relPath) {
path = relPath
}
const maxPathLen = 108
if len(path) > maxPathLen {
return "", fmt.Errorf("could not get socket path under length limit %d: %s", maxPathLen, path)
}
return path, nil
}
// createConsoleSocket creates a socket at the given path that will receive a
// console fd from the sandbox. If no error occurs, it returns the server
// socket and a cleanup function.
func createConsoleSocket(path string) (*unet.ServerSocket, func() error, error) {
srv, err := unet.BindAndListen(path, false)
if err != nil {
return nil, nil, fmt.Errorf("error binding and listening to socket %q: %v", path, err)
}
cleanup := func() error {
if err := srv.Close(); err != nil {
return fmt.Errorf("error closing socket %q: %v", path, err)
}
if err := os.Remove(path); err != nil {
return fmt.Errorf("error removing socket %q: %v", path, err)
}
return nil
}
return srv, cleanup, nil
}
// receiveConsolePTY accepts a connection on the server socket and reads fds.
// It fails if more than one FD is received, or if the FD is not a PTY. It
// returns the PTY master file.
func receiveConsolePTY(srv *unet.ServerSocket) (*os.File, error) {
sock, err := srv.Accept()
if err != nil {
return nil, fmt.Errorf("error accepting socket connection: %v", err)
}
// Allow 3 fds to be received. We only expect 1.
r := sock.Reader(true /* blocking */)
r.EnableFDs(1)
// The socket is closed right after sending the FD, so EOF is
// an allowed error.
b := [][]byte{{}}
if _, err := r.ReadVec(b); err != nil && err != io.EOF {
return nil, fmt.Errorf("error reading from socket connection: %v", err)
}
// We should have gotten a control message.
fds, err := r.ExtractFDs()
if err != nil {
return nil, fmt.Errorf("error extracting fds from socket connection: %v", err)
}
if len(fds) != 1 {
return nil, fmt.Errorf("got %d fds from socket, wanted 1", len(fds))
}
// Verify that the fd is a terminal.
if _, err := unix.IoctlGetTermios(fds[0], unix.TCGETS); err != nil {
return nil, fmt.Errorf("fd is not a terminal (ioctl TGGETS got %v)", err)
}
return os.NewFile(uintptr(fds[0]), "pty_master"), nil
}
// Test that an pty FD is sent over the console socket if one is provided.
func TestConsoleSocket(t *testing.T) {
for _, conf := range configs(all...) {
t.Logf("Running test with conf: %+v", conf)
spec := testutil.NewSpecWithArgs("true")
rootDir, bundleDir, err := testutil.SetupContainer(spec, conf)
if err != nil {
t.Fatalf("error setting up container: %v", err)
}
defer os.RemoveAll(rootDir)
defer os.RemoveAll(bundleDir)
sock, err := socketPath(bundleDir)
if err != nil {
t.Fatalf("error getting socket path: %v", err)
}
srv, cleanup, err := createConsoleSocket(sock)
if err != nil {
t.Fatalf("error creating socket at %q: %v", sock, err)
}
defer cleanup()
// Create the container and pass the socket name.
id := testutil.UniqueContainerID()
c, err := Create(id, spec, conf, bundleDir, sock, "", "")
if err != nil {
t.Fatalf("error creating container: %v", err)
}
defer c.Destroy()
// Make sure we get a console PTY.
ptyMaster, err := receiveConsolePTY(srv)
if err != nil {
t.Fatalf("error receiving console FD: %v", err)
}
ptyMaster.Close()
}
}
// Test that job control signals work on a console created with "exec -ti".
func TestJobControlSignalExec(t *testing.T) {
spec := testutil.NewSpecWithArgs("/bin/sleep", "10000")
conf := testutil.TestConfig()
rootDir, bundleDir, err := testutil.SetupContainer(spec, conf)
if err != nil {
t.Fatalf("error setting up container: %v", err)
}
defer os.RemoveAll(rootDir)
defer os.RemoveAll(bundleDir)
// Create and start the container.
c, err := Create(testutil.UniqueContainerID(), spec, conf, bundleDir, "", "", "")
if err != nil {
t.Fatalf("error creating container: %v", err)
}
defer c.Destroy()
if err := c.Start(conf); err != nil {
t.Fatalf("error starting container: %v", err)
}
// Create a pty master/slave. The slave will be passed to the exec
// process.
ptyMaster, ptySlave, err := pty.Open()
if err != nil {
t.Fatalf("error opening pty: %v", err)
}
defer ptyMaster.Close()
defer ptySlave.Close()
// Exec bash and attach a terminal.
args := &control.ExecArgs{
Filename: "/bin/bash",
// Don't let bash execute from profile or rc files, otherwise
// our PID counts get messed up.
Argv: []string{"/bin/bash", "--noprofile", "--norc"},
// Pass the pty slave as FD 0, 1, and 2.
FilePayload: urpc.FilePayload{
Files: []*os.File{ptySlave, ptySlave, ptySlave},
},
StdioIsPty: true,
}
pid, err := c.Execute(args)
if err != nil {
t.Fatalf("error executing: %v", err)
}
if pid != 2 {
t.Fatalf("exec got pid %d, wanted %d", pid, 2)
}
// Make sure all the processes are running.
expectedPL := []*control.Process{
// Root container process.
{PID: 1, Cmd: "sleep"},
// Bash from exec process.
{PID: 2, Cmd: "bash"},
}
if err := waitForProcessList(c, expectedPL); err != nil {
t.Error(err)
}
// Execute sleep.
ptyMaster.Write([]byte("sleep 100\n"))
// Wait for it to start. Sleep's PPID is bash's PID.
expectedPL = append(expectedPL, &control.Process{PID: 3, PPID: 2, Cmd: "sleep"})
if err := waitForProcessList(c, expectedPL); err != nil {
t.Error(err)
}
// Send a SIGTERM to the foreground process for the exec PID. Note that
// although we pass in the PID of "bash", it should actually terminate
// "sleep", since that is the foreground process.
if err := c.Sandbox.SignalProcess(c.ID, pid, syscall.SIGTERM, true /* fgProcess */); err != nil {
t.Fatalf("error signaling container: %v", err)
}
// Sleep process should be gone.
expectedPL = expectedPL[:len(expectedPL)-1]
if err := waitForProcessList(c, expectedPL); err != nil {
t.Error(err)
}
// Sleep is dead, but it may take more time for bash to notice and
// change the foreground process back to itself. We know it is done
// when bash writes "Terminated" to the pty.
if err := testutil.WaitUntilRead(ptyMaster, "Terminated", nil, 5*time.Second); err != nil {
t.Fatalf("bash did not take over pty: %v", err)
}
// Send a SIGKILL to the foreground process again. This time "bash"
// should be killed. We use SIGKILL instead of SIGTERM or SIGINT
// because bash ignores those.
if err := c.Sandbox.SignalProcess(c.ID, pid, syscall.SIGKILL, true /* fgProcess */); err != nil {
t.Fatalf("error signaling container: %v", err)
}
expectedPL = expectedPL[:1]
if err := waitForProcessList(c, expectedPL); err != nil {
t.Error(err)
}
// Make sure the process indicates it was killed by a SIGKILL.
ws, err := c.WaitPID(pid, true)
if err != nil {
t.Errorf("waiting on container failed: %v", err)
}
if !ws.Signaled() {
t.Error("ws.Signaled() got false, want true")
}
if got, want := ws.Signal(), syscall.SIGKILL; got != want {
t.Errorf("ws.Signal() got %v, want %v", got, want)
}
}
// Test that job control signals work on a console created with "run -ti".
func TestJobControlSignalRootContainer(t *testing.T) {
conf := testutil.TestConfig()
// Don't let bash execute from profile or rc files, otherwise our PID
// counts get messed up.
spec := testutil.NewSpecWithArgs("/bin/bash", "--noprofile", "--norc")
spec.Process.Terminal = true
rootDir, bundleDir, err := testutil.SetupContainer(spec, conf)
if err != nil {
t.Fatalf("error setting up container: %v", err)
}
defer os.RemoveAll(rootDir)
defer os.RemoveAll(bundleDir)
sock, err := socketPath(bundleDir)
if err != nil {
t.Fatalf("error getting socket path: %v", err)
}
srv, cleanup, err := createConsoleSocket(sock)
if err != nil {
t.Fatalf("error creating socket at %q: %v", sock, err)
}
defer cleanup()
// Create the container and pass the socket name.
id := testutil.UniqueContainerID()
c, err := Create(id, spec, conf, bundleDir, sock, "", "")
if err != nil {
t.Fatalf("error creating container: %v", err)
}
defer c.Destroy()
// Get the PTY master.
ptyMaster, err := receiveConsolePTY(srv)
if err != nil {
t.Fatalf("error receiving console FD: %v", err)
}
defer ptyMaster.Close()
// Bash output as well as sandbox output will be written to the PTY
// file. Writes after a certain point will block unless we drain the
// PTY, so we must continually copy from it.
//
// We log the output to stdout for debugabilitly, and also to a buffer,
// since we wait on particular output from bash below. We use a custom
// blockingBuffer which is thread-safe and also blocks on Read calls,
// which makes this a suitable Reader for WaitUntilRead.
ptyBuf := newBlockingBuffer()
tee := io.TeeReader(ptyMaster, ptyBuf)
go io.Copy(os.Stdout, tee)
// Start the container.
if err := c.Start(conf); err != nil {
t.Fatalf("error starting container: %v", err)
}
// Start waiting for the container to exit in a goroutine. We do this
// very early, otherwise it might exit before we have a chance to call
// Wait.
var (
ws syscall.WaitStatus
wg sync.WaitGroup
)
wg.Add(1)
go func() {
var err error
ws, err = c.Wait()
if err != nil {
t.Errorf("error waiting on container: %v", err)
}
wg.Done()
}()
// Wait for bash to start.
expectedPL := []*control.Process{
{PID: 1, Cmd: "bash"},
}
if err := waitForProcessList(c, expectedPL); err != nil {
t.Fatal(err)
}
// Execute sleep via the terminal.
ptyMaster.Write([]byte("sleep 100\n"))
// Wait for sleep to start.
expectedPL = append(expectedPL, &control.Process{PID: 2, PPID: 1, Cmd: "sleep"})
if err := waitForProcessList(c, expectedPL); err != nil {
t.Fatal(err)
}
// Reset the pty buffer, so there is less output for us to scan later.
ptyBuf.Reset()
// Send a SIGTERM to the foreground process. We pass PID=0, indicating
// that the root process should be killed. However, by setting
// fgProcess=true, the signal should actually be sent to sleep.
if err := c.Sandbox.SignalProcess(c.ID, 0 /* PID */, syscall.SIGTERM, true /* fgProcess */); err != nil {
t.Fatalf("error signaling container: %v", err)
}
// Sleep process should be gone.
expectedPL = expectedPL[:len(expectedPL)-1]
if err := waitForProcessList(c, expectedPL); err != nil {
t.Error(err)
}
// Sleep is dead, but it may take more time for bash to notice and
// change the foreground process back to itself. We know it is done
// when bash writes "Terminated" to the pty.
if err := testutil.WaitUntilRead(ptyBuf, "Terminated", nil, 5*time.Second); err != nil {
t.Fatalf("bash did not take over pty: %v", err)
}
// Send a SIGKILL to the foreground process again. This time "bash"
// should be killed. We use SIGKILL instead of SIGTERM or SIGINT
// because bash ignores those.
if err := c.Sandbox.SignalProcess(c.ID, 0 /* PID */, syscall.SIGKILL, true /* fgProcess */); err != nil {
t.Fatalf("error signaling container: %v", err)
}
// Wait for the sandbox to exit. It should exit with a SIGKILL status.
wg.Wait()
if !ws.Signaled() {
t.Error("ws.Signaled() got false, want true")
}
if got, want := ws.Signal(), syscall.SIGKILL; got != want {
t.Errorf("ws.Signal() got %v, want %v", got, want)
}
}
// blockingBuffer is a thread-safe buffer that blocks when reading if the
// buffer is empty. It implements io.ReadWriter.
type blockingBuffer struct {
// A send to readCh indicates that a previously empty buffer now has
// data for reading.
readCh chan struct{}
// mu protects buf.
mu sync.Mutex
buf bytes.Buffer
}
func newBlockingBuffer() *blockingBuffer {
return &blockingBuffer{
readCh: make(chan struct{}, 1),
}
}
// Write implements Writer.Write.
func (bb *blockingBuffer) Write(p []byte) (int, error) {
bb.mu.Lock()
defer bb.mu.Unlock()
l := bb.buf.Len()
n, err := bb.buf.Write(p)
if l == 0 && n > 0 {
// New data!
bb.readCh <- struct{}{}
}
return n, err
}
// Read implements Reader.Read. It will block until data is available.
func (bb *blockingBuffer) Read(p []byte) (int, error) {
for {
bb.mu.Lock()
n, err := bb.buf.Read(p)
if n > 0 || err != io.EOF {
if bb.buf.Len() == 0 {
// Reset the readCh.
select {
case <-bb.readCh:
default:
}
}
bb.mu.Unlock()
return n, err
}
bb.mu.Unlock()
// Wait for new data.
<-bb.readCh
}
}
// Reset resets the buffer.
func (bb *blockingBuffer) Reset() {
bb.mu.Lock()
defer bb.mu.Unlock()
bb.buf.Reset()
// Reset the readCh.
select {
case <-bb.readCh:
default:
}
}
|