summaryrefslogtreecommitdiffhomepage
path: root/pkg/tcpip/transport/tcp/endpoint.go
blob: 1aa1f12b41d07534a650e6b68d18c3b78200df1c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

package tcp

import (
	"fmt"
	"math"
	"strings"
	"sync"
	"sync/atomic"
	"time"

	"gvisor.dev/gvisor/pkg/rand"
	"gvisor.dev/gvisor/pkg/sleep"
	"gvisor.dev/gvisor/pkg/tcpip"
	"gvisor.dev/gvisor/pkg/tcpip/buffer"
	"gvisor.dev/gvisor/pkg/tcpip/header"
	"gvisor.dev/gvisor/pkg/tcpip/seqnum"
	"gvisor.dev/gvisor/pkg/tcpip/stack"
	"gvisor.dev/gvisor/pkg/tmutex"
	"gvisor.dev/gvisor/pkg/waiter"
)

// EndpointState represents the state of a TCP endpoint.
type EndpointState uint32

// Endpoint states. Note that are represented in a netstack-specific manner and
// may not be meaningful externally. Specifically, they need to be translated to
// Linux's representation for these states if presented to userspace.
const (
	// Endpoint states internal to netstack. These map to the TCP state CLOSED.
	StateInitial EndpointState = iota
	StateBound
	StateConnecting // Connect() called, but the initial SYN hasn't been sent.
	StateError

	// TCP protocol states.
	StateEstablished
	StateSynSent
	StateSynRecv
	StateFinWait1
	StateFinWait2
	StateTimeWait
	StateClose
	StateCloseWait
	StateLastAck
	StateListen
	StateClosing
)

// connected is the set of states where an endpoint is connected to a peer.
func (s EndpointState) connected() bool {
	switch s {
	case StateEstablished, StateFinWait1, StateFinWait2, StateTimeWait, StateCloseWait, StateLastAck, StateClosing:
		return true
	default:
		return false
	}
}

// String implements fmt.Stringer.String.
func (s EndpointState) String() string {
	switch s {
	case StateInitial:
		return "INITIAL"
	case StateBound:
		return "BOUND"
	case StateConnecting:
		return "CONNECTING"
	case StateError:
		return "ERROR"
	case StateEstablished:
		return "ESTABLISHED"
	case StateSynSent:
		return "SYN-SENT"
	case StateSynRecv:
		return "SYN-RCVD"
	case StateFinWait1:
		return "FIN-WAIT1"
	case StateFinWait2:
		return "FIN-WAIT2"
	case StateTimeWait:
		return "TIME-WAIT"
	case StateClose:
		return "CLOSED"
	case StateCloseWait:
		return "CLOSE-WAIT"
	case StateLastAck:
		return "LAST-ACK"
	case StateListen:
		return "LISTEN"
	case StateClosing:
		return "CLOSING"
	default:
		panic("unreachable")
	}
}

// Reasons for notifying the protocol goroutine.
const (
	notifyNonZeroReceiveWindow = 1 << iota
	notifyReceiveWindowChanged
	notifyClose
	notifyMTUChanged
	notifyDrain
	notifyReset
	notifyKeepaliveChanged
)

// SACKInfo holds TCP SACK related information for a given endpoint.
//
// +stateify savable
type SACKInfo struct {
	// Blocks is the maximum number of SACK blocks we track
	// per endpoint.
	Blocks [MaxSACKBlocks]header.SACKBlock

	// NumBlocks is the number of valid SACK blocks stored in the
	// blocks array above.
	NumBlocks int
}

// rcvBufAutoTuneParams are used to hold state variables to compute
// the auto tuned recv buffer size.
//
// +stateify savable
type rcvBufAutoTuneParams struct {
	// measureTime is the time at which the current measurement
	// was started.
	measureTime time.Time `state:".(unixTime)"`

	// copied is the number of bytes copied out of the receive
	// buffers since this measure began.
	copied int

	// prevCopied is the number of bytes copied out of the receive
	// buffers in the previous RTT period.
	prevCopied int

	// rtt is the non-smoothed minimum RTT as measured by observing the time
	// between when a byte is first acknowledged and the receipt of data
	// that is at least one window beyond the sequence number that was
	// acknowledged.
	rtt time.Duration

	// rttMeasureSeqNumber is the highest acceptable sequence number at the
	// time this RTT measurement period began.
	rttMeasureSeqNumber seqnum.Value

	// rttMeasureTime is the absolute time at which the current rtt
	// measurement period began.
	rttMeasureTime time.Time `state:".(unixTime)"`

	// disabled is true if an explicit receive buffer is set for the
	// endpoint.
	disabled bool
}

// endpoint represents a TCP endpoint. This struct serves as the interface
// between users of the endpoint and the protocol implementation; it is legal to
// have concurrent goroutines make calls into the endpoint, they are properly
// synchronized. The protocol implementation, however, runs in a single
// goroutine.
//
// +stateify savable
type endpoint struct {
	// workMu is used to arbitrate which goroutine may perform protocol
	// work. Only the main protocol goroutine is expected to call Lock() on
	// it, but other goroutines (e.g., send) may call TryLock() to eagerly
	// perform work without having to wait for the main one to wake up.
	workMu tmutex.Mutex `state:"nosave"`

	// The following fields are initialized at creation time and do not
	// change throughout the lifetime of the endpoint.
	stack       *stack.Stack `state:"manual"`
	netProto    tcpip.NetworkProtocolNumber
	waiterQueue *waiter.Queue `state:"wait"`

	// lastError represents the last error that the endpoint reported;
	// access to it is protected by the following mutex.
	lastErrorMu sync.Mutex   `state:"nosave"`
	lastError   *tcpip.Error `state:".(string)"`

	// The following fields are used to manage the receive queue. The
	// protocol goroutine adds ready-for-delivery segments to rcvList,
	// which are returned by Read() calls to users.
	//
	// Once the peer has closed its send side, rcvClosed is set to true
	// to indicate to users that no more data is coming.
	//
	// rcvListMu can be taken after the endpoint mu below.
	rcvListMu     sync.Mutex  `state:"nosave"`
	rcvList       segmentList `state:"wait"`
	rcvClosed     bool
	rcvBufSize    int
	rcvBufUsed    int
	rcvAutoParams rcvBufAutoTuneParams

	// The following fields are protected by the mutex.
	mu sync.RWMutex `state:"nosave"`
	id stack.TransportEndpointID

	// state             endpointState `state:".(endpointState)"`
	// pState            ProtocolState
	state EndpointState `state:".(EndpointState)"`

	isPortReserved    bool `state:"manual"`
	isRegistered      bool
	boundNICID        tcpip.NICID `state:"manual"`
	route             stack.Route `state:"manual"`
	v6only            bool
	isConnectNotified bool
	// TCP should never broadcast but Linux nevertheless supports enabling/
	// disabling SO_BROADCAST, albeit as a NOOP.
	broadcast bool

	// effectiveNetProtos contains the network protocols actually in use. In
	// most cases it will only contain "netProto", but in cases like IPv6
	// endpoints with v6only set to false, this could include multiple
	// protocols (e.g., IPv6 and IPv4) or a single different protocol (e.g.,
	// IPv4 when IPv6 endpoint is bound or connected to an IPv4 mapped
	// address).
	effectiveNetProtos []tcpip.NetworkProtocolNumber `state:"manual"`

	// hardError is meaningful only when state is stateError, it stores the
	// error to be returned when read/write syscalls are called and the
	// endpoint is in this state. hardError is protected by mu.
	hardError *tcpip.Error `state:".(string)"`

	// workerRunning specifies if a worker goroutine is running.
	workerRunning bool

	// workerCleanup specifies if the worker goroutine must perform cleanup
	// before exitting. This can only be set to true when workerRunning is
	// also true, and they're both protected by the mutex.
	workerCleanup bool

	// sendTSOk is used to indicate when the TS Option has been negotiated.
	// When sendTSOk is true every non-RST segment should carry a TS as per
	// RFC7323#section-1.1
	sendTSOk bool

	// recentTS is the timestamp that should be sent in the TSEcr field of
	// the timestamp for future segments sent by the endpoint. This field is
	// updated if required when a new segment is received by this endpoint.
	recentTS uint32

	// tsOffset is a randomized offset added to the value of the
	// TSVal field in the timestamp option.
	tsOffset uint32

	// shutdownFlags represent the current shutdown state of the endpoint.
	shutdownFlags tcpip.ShutdownFlags

	// sackPermitted is set to true if the peer sends the TCPSACKPermitted
	// option in the SYN/SYN-ACK.
	sackPermitted bool

	// sack holds TCP SACK related information for this endpoint.
	sack SACKInfo

	// reusePort is set to true if SO_REUSEPORT is enabled.
	reusePort bool

	// delay enables Nagle's algorithm.
	//
	// delay is a boolean (0 is false) and must be accessed atomically.
	delay uint32

	// cork holds back segments until full.
	//
	// cork is a boolean (0 is false) and must be accessed atomically.
	cork uint32

	// scoreboard holds TCP SACK Scoreboard information for this endpoint.
	scoreboard *SACKScoreboard

	// The options below aren't implemented, but we remember the user
	// settings because applications expect to be able to set/query these
	// options.
	reuseAddr bool

	// slowAck holds the negated state of quick ack. It is stubbed out and
	// does nothing.
	//
	// slowAck is a boolean (0 is false) and must be accessed atomically.
	slowAck uint32

	// segmentQueue is used to hand received segments to the protocol
	// goroutine. Segments are queued as long as the queue is not full,
	// and dropped when it is.
	segmentQueue segmentQueue `state:"wait"`

	// synRcvdCount is the number of connections for this endpoint that are
	// in SYN-RCVD state.
	synRcvdCount int

	// The following fields are used to manage the send buffer. When
	// segments are ready to be sent, they are added to sndQueue and the
	// protocol goroutine is signaled via sndWaker.
	//
	// When the send side is closed, the protocol goroutine is notified via
	// sndCloseWaker, and sndClosed is set to true.
	sndBufMu      sync.Mutex `state:"nosave"`
	sndBufSize    int
	sndBufUsed    int
	sndClosed     bool
	sndBufInQueue seqnum.Size
	sndQueue      segmentList `state:"wait"`
	sndWaker      sleep.Waker `state:"manual"`
	sndCloseWaker sleep.Waker `state:"manual"`

	// cc stores the name of the Congestion Control algorithm to use for
	// this endpoint.
	cc tcpip.CongestionControlOption

	// The following are used when a "packet too big" control packet is
	// received. They are protected by sndBufMu. They are used to
	// communicate to the main protocol goroutine how many such control
	// messages have been received since the last notification was processed
	// and what was the smallest MTU seen.
	packetTooBigCount int
	sndMTU            int

	// newSegmentWaker is used to indicate to the protocol goroutine that
	// it needs to wake up and handle new segments queued to it.
	newSegmentWaker sleep.Waker `state:"manual"`

	// notificationWaker is used to indicate to the protocol goroutine that
	// it needs to wake up and check for notifications.
	notificationWaker sleep.Waker `state:"manual"`

	// notifyFlags is a bitmask of flags used to indicate to the protocol
	// goroutine what it was notified; this is only accessed atomically.
	notifyFlags uint32 `state:"nosave"`

	// keepalive manages TCP keepalive state. When the connection is idle
	// (no data sent or received) for keepaliveIdle, we start sending
	// keepalives every keepalive.interval. If we send keepalive.count
	// without hearing a response, the connection is closed.
	keepalive keepalive

	// acceptedChan is used by a listening endpoint protocol goroutine to
	// send newly accepted connections to the endpoint so that they can be
	// read by Accept() calls.
	acceptedChan chan *endpoint `state:".([]*endpoint)"`

	// The following are only used from the protocol goroutine, and
	// therefore don't need locks to protect them.
	rcv *receiver `state:"wait"`
	snd *sender   `state:"wait"`

	// The goroutine drain completion notification channel.
	drainDone chan struct{} `state:"nosave"`

	// The goroutine undrain notification channel.
	undrain chan struct{} `state:"nosave"`

	// probe if not nil is invoked on every received segment. It is passed
	// a copy of the current state of the endpoint.
	probe stack.TCPProbeFunc `state:"nosave"`

	// The following are only used to assist the restore run to re-connect.
	bindAddress       tcpip.Address
	connectingAddress tcpip.Address

	// amss is the advertised MSS to the peer by this endpoint.
	amss uint16

	gso *stack.GSO
}

// StopWork halts packet processing. Only to be used in tests.
func (e *endpoint) StopWork() {
	e.workMu.Lock()
}

// ResumeWork resumes packet processing. Only to be used in tests.
func (e *endpoint) ResumeWork() {
	e.workMu.Unlock()
}

// keepalive is a synchronization wrapper used to appease stateify. See the
// comment in endpoint, where it is used.
//
// +stateify savable
type keepalive struct {
	sync.Mutex `state:"nosave"`
	enabled    bool
	idle       time.Duration
	interval   time.Duration
	count      int
	unacked    int
	timer      timer       `state:"nosave"`
	waker      sleep.Waker `state:"nosave"`
}

func newEndpoint(stack *stack.Stack, netProto tcpip.NetworkProtocolNumber, waiterQueue *waiter.Queue) *endpoint {
	e := &endpoint{
		stack:       stack,
		netProto:    netProto,
		waiterQueue: waiterQueue,
		state:       StateInitial,
		rcvBufSize:  DefaultReceiveBufferSize,
		sndBufSize:  DefaultSendBufferSize,
		sndMTU:      int(math.MaxInt32),
		reuseAddr:   true,
		keepalive: keepalive{
			// Linux defaults.
			idle:     2 * time.Hour,
			interval: 75 * time.Second,
			count:    9,
		},
	}

	var ss SendBufferSizeOption
	if err := stack.TransportProtocolOption(ProtocolNumber, &ss); err == nil {
		e.sndBufSize = ss.Default
	}

	var rs ReceiveBufferSizeOption
	if err := stack.TransportProtocolOption(ProtocolNumber, &rs); err == nil {
		e.rcvBufSize = rs.Default
	}

	var cs tcpip.CongestionControlOption
	if err := stack.TransportProtocolOption(ProtocolNumber, &cs); err == nil {
		e.cc = cs
	}

	var mrb tcpip.ModerateReceiveBufferOption
	if err := stack.TransportProtocolOption(ProtocolNumber, &mrb); err == nil {
		e.rcvAutoParams.disabled = !bool(mrb)
	}

	if p := stack.GetTCPProbe(); p != nil {
		e.probe = p
	}

	e.segmentQueue.setLimit(MaxUnprocessedSegments)
	e.workMu.Init()
	e.workMu.Lock()
	e.tsOffset = timeStampOffset()

	return e
}

// Readiness returns the current readiness of the endpoint. For example, if
// waiter.EventIn is set, the endpoint is immediately readable.
func (e *endpoint) Readiness(mask waiter.EventMask) waiter.EventMask {
	result := waiter.EventMask(0)

	e.mu.RLock()
	defer e.mu.RUnlock()

	switch e.state {
	case StateInitial, StateBound, StateConnecting, StateSynSent, StateSynRecv:
		// Ready for nothing.

	case StateClose, StateError:
		// Ready for anything.
		result = mask

	case StateListen:
		// Check if there's anything in the accepted channel.
		if (mask & waiter.EventIn) != 0 {
			if len(e.acceptedChan) > 0 {
				result |= waiter.EventIn
			}
		}

	case StateEstablished, StateFinWait1, StateFinWait2, StateTimeWait, StateCloseWait, StateLastAck, StateClosing:
		// Determine if the endpoint is writable if requested.
		if (mask & waiter.EventOut) != 0 {
			e.sndBufMu.Lock()
			if e.sndClosed || e.sndBufUsed < e.sndBufSize {
				result |= waiter.EventOut
			}
			e.sndBufMu.Unlock()
		}

		// Determine if the endpoint is readable if requested.
		if (mask & waiter.EventIn) != 0 {
			e.rcvListMu.Lock()
			if e.rcvBufUsed > 0 || e.rcvClosed {
				result |= waiter.EventIn
			}
			e.rcvListMu.Unlock()
		}
	}

	return result
}

func (e *endpoint) fetchNotifications() uint32 {
	return atomic.SwapUint32(&e.notifyFlags, 0)
}

func (e *endpoint) notifyProtocolGoroutine(n uint32) {
	for {
		v := atomic.LoadUint32(&e.notifyFlags)
		if v&n == n {
			// The flags are already set.
			return
		}

		if atomic.CompareAndSwapUint32(&e.notifyFlags, v, v|n) {
			if v == 0 {
				// We are causing a transition from no flags to
				// at least one flag set, so we must cause the
				// protocol goroutine to wake up.
				e.notificationWaker.Assert()
			}
			return
		}
	}
}

// Close puts the endpoint in a closed state and frees all resources associated
// with it. It must be called only once and with no other concurrent calls to
// the endpoint.
func (e *endpoint) Close() {
	// Issue a shutdown so that the peer knows we won't send any more data
	// if we're connected, or stop accepting if we're listening.
	e.Shutdown(tcpip.ShutdownWrite | tcpip.ShutdownRead)

	e.mu.Lock()

	// For listening sockets, we always release ports inline so that they
	// are immediately available for reuse after Close() is called. If also
	// registered, we unregister as well otherwise the next user would fail
	// in Listen() when trying to register.
	if e.state == StateListen && e.isPortReserved {
		if e.isRegistered {
			e.stack.UnregisterTransportEndpoint(e.boundNICID, e.effectiveNetProtos, ProtocolNumber, e.id, e)
			e.isRegistered = false
		}

		e.stack.ReleasePort(e.effectiveNetProtos, ProtocolNumber, e.id.LocalAddress, e.id.LocalPort)
		e.isPortReserved = false
	}

	// Either perform the local cleanup or kick the worker to make sure it
	// knows it needs to cleanup.
	tcpip.AddDanglingEndpoint(e)
	if !e.workerRunning {
		e.cleanupLocked()
	} else {
		e.workerCleanup = true
		e.notifyProtocolGoroutine(notifyClose)
	}

	e.mu.Unlock()
}

// cleanupLocked frees all resources associated with the endpoint. It is called
// after Close() is called and the worker goroutine (if any) is done with its
// work.
func (e *endpoint) cleanupLocked() {
	// Close all endpoints that might have been accepted by TCP but not by
	// the client.
	if e.acceptedChan != nil {
		close(e.acceptedChan)
		for n := range e.acceptedChan {
			n.mu.Lock()
			n.resetConnectionLocked(tcpip.ErrConnectionAborted)
			n.mu.Unlock()
			n.Close()
		}
		e.acceptedChan = nil
	}
	e.workerCleanup = false

	if e.isRegistered {
		e.stack.UnregisterTransportEndpoint(e.boundNICID, e.effectiveNetProtos, ProtocolNumber, e.id, e)
		e.isRegistered = false
	}

	if e.isPortReserved {
		e.stack.ReleasePort(e.effectiveNetProtos, ProtocolNumber, e.id.LocalAddress, e.id.LocalPort)
		e.isPortReserved = false
	}

	e.route.Release()
	tcpip.DeleteDanglingEndpoint(e)
}

// initialReceiveWindow returns the initial receive window to advertise in the
// SYN/SYN-ACK.
func (e *endpoint) initialReceiveWindow() int {
	rcvWnd := e.receiveBufferAvailable()
	if rcvWnd > math.MaxUint16 {
		rcvWnd = math.MaxUint16
	}
	routeWnd := InitialCwnd * int(mssForRoute(&e.route)) * 2
	if rcvWnd > routeWnd {
		rcvWnd = routeWnd
	}
	return rcvWnd
}

// ModerateRecvBuf adjusts the receive buffer and the advertised window
// based on the number of bytes copied to user space.
func (e *endpoint) ModerateRecvBuf(copied int) {
	e.rcvListMu.Lock()
	if e.rcvAutoParams.disabled {
		e.rcvListMu.Unlock()
		return
	}
	now := time.Now()
	if rtt := e.rcvAutoParams.rtt; rtt == 0 || now.Sub(e.rcvAutoParams.measureTime) < rtt {
		e.rcvAutoParams.copied += copied
		e.rcvListMu.Unlock()
		return
	}
	prevRTTCopied := e.rcvAutoParams.copied + copied
	prevCopied := e.rcvAutoParams.prevCopied
	rcvWnd := 0
	if prevRTTCopied > prevCopied {
		// The minimal receive window based on what was copied by the app
		// in the immediate preceding RTT and some extra buffer for 16
		// segments to account for variations.
		// We multiply by 2 to account for packet losses.
		rcvWnd = prevRTTCopied*2 + 16*int(e.amss)

		// Scale for slow start based on bytes copied in this RTT vs previous.
		grow := (rcvWnd * (prevRTTCopied - prevCopied)) / prevCopied

		// Multiply growth factor by 2 again to account for sender being
		// in slow-start where the sender grows it's congestion window
		// by 100% per RTT.
		rcvWnd += grow * 2

		// Make sure auto tuned buffer size can always receive upto 2x
		// the initial window of 10 segments.
		if minRcvWnd := int(e.amss) * InitialCwnd * 2; rcvWnd < minRcvWnd {
			rcvWnd = minRcvWnd
		}

		// Cap the auto tuned buffer size by the maximum permissible
		// receive buffer size.
		if max := e.maxReceiveBufferSize(); rcvWnd > max {
			rcvWnd = max
		}

		// We do not adjust downwards as that can cause the receiver to
		// reject valid data that might already be in flight as the
		// acceptable window will shrink.
		if rcvWnd > e.rcvBufSize {
			e.rcvBufSize = rcvWnd
			e.notifyProtocolGoroutine(notifyReceiveWindowChanged)
		}

		// We only update prevCopied when we grow the buffer because in cases
		// where prevCopied > prevRTTCopied the existing buffer is already big
		// enough to handle the current rate and we don't need to do any
		// adjustments.
		e.rcvAutoParams.prevCopied = prevRTTCopied
	}
	e.rcvAutoParams.measureTime = now
	e.rcvAutoParams.copied = 0
	e.rcvListMu.Unlock()
}

// Read reads data from the endpoint.
func (e *endpoint) Read(*tcpip.FullAddress) (buffer.View, tcpip.ControlMessages, *tcpip.Error) {
	e.mu.RLock()
	// The endpoint can be read if it's connected, or if it's already closed
	// but has some pending unread data. Also note that a RST being received
	// would cause the state to become StateError so we should allow the
	// reads to proceed before returning a ECONNRESET.
	e.rcvListMu.Lock()
	bufUsed := e.rcvBufUsed
	if s := e.state; !s.connected() && s != StateClose && bufUsed == 0 {
		e.rcvListMu.Unlock()
		he := e.hardError
		e.mu.RUnlock()
		if s == StateError {
			return buffer.View{}, tcpip.ControlMessages{}, he
		}
		return buffer.View{}, tcpip.ControlMessages{}, tcpip.ErrInvalidEndpointState
	}

	v, err := e.readLocked()
	e.rcvListMu.Unlock()

	e.mu.RUnlock()

	return v, tcpip.ControlMessages{}, err
}

func (e *endpoint) readLocked() (buffer.View, *tcpip.Error) {
	if e.rcvBufUsed == 0 {
		if e.rcvClosed || !e.state.connected() {
			return buffer.View{}, tcpip.ErrClosedForReceive
		}
		return buffer.View{}, tcpip.ErrWouldBlock
	}

	s := e.rcvList.Front()
	views := s.data.Views()
	v := views[s.viewToDeliver]
	s.viewToDeliver++

	if s.viewToDeliver >= len(views) {
		e.rcvList.Remove(s)
		s.decRef()
	}

	scale := e.rcv.rcvWndScale
	wasZero := e.zeroReceiveWindow(scale)
	e.rcvBufUsed -= len(v)
	if wasZero && !e.zeroReceiveWindow(scale) {
		e.notifyProtocolGoroutine(notifyNonZeroReceiveWindow)
	}

	return v, nil
}

// Write writes data to the endpoint's peer.
func (e *endpoint) Write(p tcpip.Payload, opts tcpip.WriteOptions) (uintptr, <-chan struct{}, *tcpip.Error) {
	// Linux completely ignores any address passed to sendto(2) for TCP sockets
	// (without the MSG_FASTOPEN flag). Corking is unimplemented, so opts.More
	// and opts.EndOfRecord are also ignored.

	e.mu.RLock()
	defer e.mu.RUnlock()

	// The endpoint cannot be written to if it's not connected.
	if !e.state.connected() {
		switch e.state {
		case StateError:
			return 0, nil, e.hardError
		default:
			return 0, nil, tcpip.ErrClosedForSend
		}
	}

	// Nothing to do if the buffer is empty.
	if p.Size() == 0 {
		return 0, nil, nil
	}

	e.sndBufMu.Lock()

	// Check if the connection has already been closed for sends.
	if e.sndClosed {
		e.sndBufMu.Unlock()
		return 0, nil, tcpip.ErrClosedForSend
	}

	// Check against the limit.
	avail := e.sndBufSize - e.sndBufUsed
	if avail <= 0 {
		e.sndBufMu.Unlock()
		return 0, nil, tcpip.ErrWouldBlock
	}

	v, perr := p.Get(avail)
	if perr != nil {
		e.sndBufMu.Unlock()
		return 0, nil, perr
	}

	l := len(v)
	s := newSegmentFromView(&e.route, e.id, v)

	// Add data to the send queue.
	e.sndBufUsed += l
	e.sndBufInQueue += seqnum.Size(l)
	e.sndQueue.PushBack(s)

	e.sndBufMu.Unlock()

	if e.workMu.TryLock() {
		// Do the work inline.
		e.handleWrite()
		e.workMu.Unlock()
	} else {
		// Let the protocol goroutine do the work.
		e.sndWaker.Assert()
	}
	return uintptr(l), nil, nil
}

// Peek reads data without consuming it from the endpoint.
//
// This method does not block if there is no data pending.
func (e *endpoint) Peek(vec [][]byte) (uintptr, tcpip.ControlMessages, *tcpip.Error) {
	e.mu.RLock()
	defer e.mu.RUnlock()

	// The endpoint can be read if it's connected, or if it's already closed
	// but has some pending unread data.
	if s := e.state; !s.connected() && s != StateClose {
		if s == StateError {
			return 0, tcpip.ControlMessages{}, e.hardError
		}
		return 0, tcpip.ControlMessages{}, tcpip.ErrInvalidEndpointState
	}

	e.rcvListMu.Lock()
	defer e.rcvListMu.Unlock()

	if e.rcvBufUsed == 0 {
		if e.rcvClosed || !e.state.connected() {
			return 0, tcpip.ControlMessages{}, tcpip.ErrClosedForReceive
		}
		return 0, tcpip.ControlMessages{}, tcpip.ErrWouldBlock
	}

	// Make a copy of vec so we can modify the slide headers.
	vec = append([][]byte(nil), vec...)

	var num uintptr

	for s := e.rcvList.Front(); s != nil; s = s.Next() {
		views := s.data.Views()

		for i := s.viewToDeliver; i < len(views); i++ {
			v := views[i]

			for len(v) > 0 {
				if len(vec) == 0 {
					return num, tcpip.ControlMessages{}, nil
				}
				if len(vec[0]) == 0 {
					vec = vec[1:]
					continue
				}

				n := copy(vec[0], v)
				v = v[n:]
				vec[0] = vec[0][n:]
				num += uintptr(n)
			}
		}
	}

	return num, tcpip.ControlMessages{}, nil
}

// zeroReceiveWindow checks if the receive window to be announced now would be
// zero, based on the amount of available buffer and the receive window scaling.
//
// It must be called with rcvListMu held.
func (e *endpoint) zeroReceiveWindow(scale uint8) bool {
	if e.rcvBufUsed >= e.rcvBufSize {
		return true
	}

	return ((e.rcvBufSize - e.rcvBufUsed) >> scale) == 0
}

// SetSockOpt sets a socket option.
func (e *endpoint) SetSockOpt(opt interface{}) *tcpip.Error {
	switch v := opt.(type) {
	case tcpip.DelayOption:
		if v == 0 {
			atomic.StoreUint32(&e.delay, 0)

			// Handle delayed data.
			e.sndWaker.Assert()
		} else {
			atomic.StoreUint32(&e.delay, 1)
		}
		return nil

	case tcpip.CorkOption:
		if v == 0 {
			atomic.StoreUint32(&e.cork, 0)

			// Handle the corked data.
			e.sndWaker.Assert()
		} else {
			atomic.StoreUint32(&e.cork, 1)
		}
		return nil

	case tcpip.ReuseAddressOption:
		e.mu.Lock()
		e.reuseAddr = v != 0
		e.mu.Unlock()
		return nil

	case tcpip.ReusePortOption:
		e.mu.Lock()
		e.reusePort = v != 0
		e.mu.Unlock()
		return nil

	case tcpip.QuickAckOption:
		if v == 0 {
			atomic.StoreUint32(&e.slowAck, 1)
		} else {
			atomic.StoreUint32(&e.slowAck, 0)
		}
		return nil

	case tcpip.ReceiveBufferSizeOption:
		// Make sure the receive buffer size is within the min and max
		// allowed.
		var rs ReceiveBufferSizeOption
		size := int(v)
		if err := e.stack.TransportProtocolOption(ProtocolNumber, &rs); err == nil {
			if size < rs.Min {
				size = rs.Min
			}
			if size > rs.Max {
				size = rs.Max
			}
		}

		mask := uint32(notifyReceiveWindowChanged)

		e.rcvListMu.Lock()

		// Make sure the receive buffer size allows us to send a
		// non-zero window size.
		scale := uint8(0)
		if e.rcv != nil {
			scale = e.rcv.rcvWndScale
		}
		if size>>scale == 0 {
			size = 1 << scale
		}

		// Make sure 2*size doesn't overflow.
		if size > math.MaxInt32/2 {
			size = math.MaxInt32 / 2
		}

		wasZero := e.zeroReceiveWindow(scale)
		e.rcvBufSize = size
		e.rcvAutoParams.disabled = true
		if wasZero && !e.zeroReceiveWindow(scale) {
			mask |= notifyNonZeroReceiveWindow
		}
		e.rcvListMu.Unlock()

		e.notifyProtocolGoroutine(mask)
		return nil

	case tcpip.SendBufferSizeOption:
		// Make sure the send buffer size is within the min and max
		// allowed.
		size := int(v)
		var ss SendBufferSizeOption
		if err := e.stack.TransportProtocolOption(ProtocolNumber, &ss); err == nil {
			if size < ss.Min {
				size = ss.Min
			}
			if size > ss.Max {
				size = ss.Max
			}
		}

		e.sndBufMu.Lock()
		e.sndBufSize = size
		e.sndBufMu.Unlock()
		return nil

	case tcpip.V6OnlyOption:
		// We only recognize this option on v6 endpoints.
		if e.netProto != header.IPv6ProtocolNumber {
			return tcpip.ErrInvalidEndpointState
		}

		e.mu.Lock()
		defer e.mu.Unlock()

		// We only allow this to be set when we're in the initial state.
		if e.state != StateInitial {
			return tcpip.ErrInvalidEndpointState
		}

		e.v6only = v != 0
		return nil

	case tcpip.KeepaliveEnabledOption:
		e.keepalive.Lock()
		e.keepalive.enabled = v != 0
		e.keepalive.Unlock()
		e.notifyProtocolGoroutine(notifyKeepaliveChanged)
		return nil

	case tcpip.KeepaliveIdleOption:
		e.keepalive.Lock()
		e.keepalive.idle = time.Duration(v)
		e.keepalive.Unlock()
		e.notifyProtocolGoroutine(notifyKeepaliveChanged)
		return nil

	case tcpip.KeepaliveIntervalOption:
		e.keepalive.Lock()
		e.keepalive.interval = time.Duration(v)
		e.keepalive.Unlock()
		e.notifyProtocolGoroutine(notifyKeepaliveChanged)
		return nil

	case tcpip.KeepaliveCountOption:
		e.keepalive.Lock()
		e.keepalive.count = int(v)
		e.keepalive.Unlock()
		e.notifyProtocolGoroutine(notifyKeepaliveChanged)
		return nil

	case tcpip.BroadcastOption:
		e.mu.Lock()
		e.broadcast = v != 0
		e.mu.Unlock()
		return nil

	case tcpip.CongestionControlOption:
		// Query the available cc algorithms in the stack and
		// validate that the specified algorithm is actually
		// supported in the stack.
		var avail tcpip.AvailableCongestionControlOption
		if err := e.stack.TransportProtocolOption(ProtocolNumber, &avail); err != nil {
			return err
		}
		availCC := strings.Split(string(avail), " ")
		for _, cc := range availCC {
			if v == tcpip.CongestionControlOption(cc) {
				// Acquire the work mutex as we may need to
				// reinitialize the congestion control state.
				e.mu.Lock()
				state := e.state
				e.cc = v
				e.mu.Unlock()
				switch state {
				case StateEstablished:
					e.workMu.Lock()
					e.mu.Lock()
					if e.state == state {
						e.snd.cc = e.snd.initCongestionControl(e.cc)
					}
					e.mu.Unlock()
					e.workMu.Unlock()
				}
				return nil
			}
		}

		// Linux returns ENOENT when an invalid congestion
		// control algorithm is specified.
		return tcpip.ErrNoSuchFile
	default:
		return nil
	}
}

// readyReceiveSize returns the number of bytes ready to be received.
func (e *endpoint) readyReceiveSize() (int, *tcpip.Error) {
	e.mu.RLock()
	defer e.mu.RUnlock()

	// The endpoint cannot be in listen state.
	if e.state == StateListen {
		return 0, tcpip.ErrInvalidEndpointState
	}

	e.rcvListMu.Lock()
	defer e.rcvListMu.Unlock()

	return e.rcvBufUsed, nil
}

// GetSockOpt implements tcpip.Endpoint.GetSockOpt.
func (e *endpoint) GetSockOpt(opt interface{}) *tcpip.Error {
	switch o := opt.(type) {
	case tcpip.ErrorOption:
		e.lastErrorMu.Lock()
		err := e.lastError
		e.lastError = nil
		e.lastErrorMu.Unlock()
		return err

	case *tcpip.SendBufferSizeOption:
		e.sndBufMu.Lock()
		*o = tcpip.SendBufferSizeOption(e.sndBufSize)
		e.sndBufMu.Unlock()
		return nil

	case *tcpip.ReceiveBufferSizeOption:
		e.rcvListMu.Lock()
		*o = tcpip.ReceiveBufferSizeOption(e.rcvBufSize)
		e.rcvListMu.Unlock()
		return nil

	case *tcpip.ReceiveQueueSizeOption:
		v, err := e.readyReceiveSize()
		if err != nil {
			return err
		}

		*o = tcpip.ReceiveQueueSizeOption(v)
		return nil

	case *tcpip.DelayOption:
		*o = 0
		if v := atomic.LoadUint32(&e.delay); v != 0 {
			*o = 1
		}
		return nil

	case *tcpip.CorkOption:
		*o = 0
		if v := atomic.LoadUint32(&e.cork); v != 0 {
			*o = 1
		}
		return nil

	case *tcpip.ReuseAddressOption:
		e.mu.RLock()
		v := e.reuseAddr
		e.mu.RUnlock()

		*o = 0
		if v {
			*o = 1
		}
		return nil

	case *tcpip.ReusePortOption:
		e.mu.RLock()
		v := e.reusePort
		e.mu.RUnlock()

		*o = 0
		if v {
			*o = 1
		}
		return nil

	case *tcpip.QuickAckOption:
		*o = 1
		if v := atomic.LoadUint32(&e.slowAck); v != 0 {
			*o = 0
		}
		return nil

	case *tcpip.V6OnlyOption:
		// We only recognize this option on v6 endpoints.
		if e.netProto != header.IPv6ProtocolNumber {
			return tcpip.ErrUnknownProtocolOption
		}

		e.mu.Lock()
		v := e.v6only
		e.mu.Unlock()

		*o = 0
		if v {
			*o = 1
		}
		return nil

	case *tcpip.TCPInfoOption:
		*o = tcpip.TCPInfoOption{}
		e.mu.RLock()
		snd := e.snd
		e.mu.RUnlock()
		if snd != nil {
			snd.rtt.Lock()
			o.RTT = snd.rtt.srtt
			o.RTTVar = snd.rtt.rttvar
			snd.rtt.Unlock()
		}
		return nil

	case *tcpip.KeepaliveEnabledOption:
		e.keepalive.Lock()
		v := e.keepalive.enabled
		e.keepalive.Unlock()

		*o = 0
		if v {
			*o = 1
		}
		return nil

	case *tcpip.KeepaliveIdleOption:
		e.keepalive.Lock()
		*o = tcpip.KeepaliveIdleOption(e.keepalive.idle)
		e.keepalive.Unlock()
		return nil

	case *tcpip.KeepaliveIntervalOption:
		e.keepalive.Lock()
		*o = tcpip.KeepaliveIntervalOption(e.keepalive.interval)
		e.keepalive.Unlock()
		return nil

	case *tcpip.KeepaliveCountOption:
		e.keepalive.Lock()
		*o = tcpip.KeepaliveCountOption(e.keepalive.count)
		e.keepalive.Unlock()
		return nil

	case *tcpip.OutOfBandInlineOption:
		// We don't currently support disabling this option.
		*o = 1
		return nil

	case *tcpip.BroadcastOption:
		e.mu.Lock()
		v := e.broadcast
		e.mu.Unlock()

		*o = 0
		if v {
			*o = 1
		}
		return nil

	case *tcpip.CongestionControlOption:
		e.mu.Lock()
		*o = e.cc
		e.mu.Unlock()
		return nil

	default:
		return tcpip.ErrUnknownProtocolOption
	}
}

func (e *endpoint) checkV4Mapped(addr *tcpip.FullAddress) (tcpip.NetworkProtocolNumber, *tcpip.Error) {
	netProto := e.netProto
	if header.IsV4MappedAddress(addr.Addr) {
		// Fail if using a v4 mapped address on a v6only endpoint.
		if e.v6only {
			return 0, tcpip.ErrNoRoute
		}

		netProto = header.IPv4ProtocolNumber
		addr.Addr = addr.Addr[header.IPv6AddressSize-header.IPv4AddressSize:]
		if addr.Addr == "\x00\x00\x00\x00" {
			addr.Addr = ""
		}
	}

	// Fail if we're bound to an address length different from the one we're
	// checking.
	if l := len(e.id.LocalAddress); l != 0 && len(addr.Addr) != 0 && l != len(addr.Addr) {
		return 0, tcpip.ErrInvalidEndpointState
	}

	return netProto, nil
}

// Connect connects the endpoint to its peer.
func (e *endpoint) Connect(addr tcpip.FullAddress) *tcpip.Error {
	return e.connect(addr, true, true)
}

// connect connects the endpoint to its peer. In the normal non-S/R case, the
// new connection is expected to run the main goroutine and perform handshake.
// In restore of previously connected endpoints, both ends will be passively
// created (so no new handshaking is done); for stack-accepted connections not
// yet accepted by the app, they are restored without running the main goroutine
// here.
func (e *endpoint) connect(addr tcpip.FullAddress, handshake bool, run bool) (err *tcpip.Error) {
	e.mu.Lock()
	defer e.mu.Unlock()
	defer func() {
		if err != nil && !err.IgnoreStats() {
			e.stack.Stats().TCP.FailedConnectionAttempts.Increment()
		}
	}()

	connectingAddr := addr.Addr

	netProto, err := e.checkV4Mapped(&addr)
	if err != nil {
		return err
	}

	nicid := addr.NIC
	switch e.state {
	case StateBound:
		// If we're already bound to a NIC but the caller is requesting
		// that we use a different one now, we cannot proceed.
		if e.boundNICID == 0 {
			break
		}

		if nicid != 0 && nicid != e.boundNICID {
			return tcpip.ErrNoRoute
		}

		nicid = e.boundNICID

	case StateInitial:
		// Nothing to do. We'll eventually fill-in the gaps in the ID (if any)
		// when we find a route.

	case StateConnecting, StateSynSent, StateSynRecv:
		// A connection request has already been issued but hasn't completed
		// yet.
		return tcpip.ErrAlreadyConnecting

	case StateEstablished:
		// The endpoint is already connected. If caller hasn't been notified yet, return success.
		if !e.isConnectNotified {
			e.isConnectNotified = true
			return nil
		}
		// Otherwise return that it's already connected.
		return tcpip.ErrAlreadyConnected

	case StateError:
		return e.hardError

	default:
		return tcpip.ErrInvalidEndpointState
	}

	// Find a route to the desired destination.
	r, err := e.stack.FindRoute(nicid, e.id.LocalAddress, addr.Addr, netProto, false /* multicastLoop */)
	if err != nil {
		return err
	}
	defer r.Release()

	origID := e.id

	netProtos := []tcpip.NetworkProtocolNumber{netProto}
	e.id.LocalAddress = r.LocalAddress
	e.id.RemoteAddress = r.RemoteAddress
	e.id.RemotePort = addr.Port

	if e.id.LocalPort != 0 {
		// The endpoint is bound to a port, attempt to register it.
		err := e.stack.RegisterTransportEndpoint(nicid, netProtos, ProtocolNumber, e.id, e, e.reusePort)
		if err != nil {
			return err
		}
	} else {
		// The endpoint doesn't have a local port yet, so try to get
		// one. Make sure that it isn't one that will result in the same
		// address/port for both local and remote (otherwise this
		// endpoint would be trying to connect to itself).
		sameAddr := e.id.LocalAddress == e.id.RemoteAddress
		if _, err := e.stack.PickEphemeralPort(func(p uint16) (bool, *tcpip.Error) {
			if sameAddr && p == e.id.RemotePort {
				return false, nil
			}
			if !e.stack.IsPortAvailable(netProtos, ProtocolNumber, e.id.LocalAddress, p, false) {
				return false, nil
			}

			id := e.id
			id.LocalPort = p
			switch e.stack.RegisterTransportEndpoint(nicid, netProtos, ProtocolNumber, id, e, e.reusePort) {
			case nil:
				e.id = id
				return true, nil
			case tcpip.ErrPortInUse:
				return false, nil
			default:
				return false, err
			}
		}); err != nil {
			return err
		}
	}

	// Remove the port reservation. This can happen when Bind is called
	// before Connect: in such a case we don't want to hold on to
	// reservations anymore.
	if e.isPortReserved {
		e.stack.ReleasePort(e.effectiveNetProtos, ProtocolNumber, origID.LocalAddress, origID.LocalPort)
		e.isPortReserved = false
	}

	e.isRegistered = true
	e.state = StateConnecting
	e.route = r.Clone()
	e.boundNICID = nicid
	e.effectiveNetProtos = netProtos
	e.connectingAddress = connectingAddr

	e.initGSO()

	// Connect in the restore phase does not perform handshake. Restore its
	// connection setting here.
	if !handshake {
		e.segmentQueue.mu.Lock()
		for _, l := range []segmentList{e.segmentQueue.list, e.sndQueue, e.snd.writeList} {
			for s := l.Front(); s != nil; s = s.Next() {
				s.id = e.id
				s.route = r.Clone()
				e.sndWaker.Assert()
			}
		}
		e.segmentQueue.mu.Unlock()
		e.snd.updateMaxPayloadSize(int(e.route.MTU()), 0)
		e.state = StateEstablished
	}

	if run {
		e.workerRunning = true
		e.stack.Stats().TCP.ActiveConnectionOpenings.Increment()
		go e.protocolMainLoop(handshake) // S/R-SAFE: will be drained before save.
	}

	return tcpip.ErrConnectStarted
}

// ConnectEndpoint is not supported.
func (*endpoint) ConnectEndpoint(tcpip.Endpoint) *tcpip.Error {
	return tcpip.ErrInvalidEndpointState
}

// Shutdown closes the read and/or write end of the endpoint connection to its
// peer.
func (e *endpoint) Shutdown(flags tcpip.ShutdownFlags) *tcpip.Error {
	e.mu.Lock()
	defer e.mu.Unlock()
	e.shutdownFlags |= flags

	switch {
	case e.state.connected():
		// Close for read.
		if (e.shutdownFlags & tcpip.ShutdownRead) != 0 {
			// Mark read side as closed.
			e.rcvListMu.Lock()
			e.rcvClosed = true
			rcvBufUsed := e.rcvBufUsed
			e.rcvListMu.Unlock()

			// If we're fully closed and we have unread data we need to abort
			// the connection with a RST.
			if (e.shutdownFlags&tcpip.ShutdownWrite) != 0 && rcvBufUsed > 0 {
				e.notifyProtocolGoroutine(notifyReset)
				return nil
			}
		}

		// Close for write.
		if (e.shutdownFlags & tcpip.ShutdownWrite) != 0 {
			e.sndBufMu.Lock()

			if e.sndClosed {
				// Already closed.
				e.sndBufMu.Unlock()
				break
			}

			// Queue fin segment.
			s := newSegmentFromView(&e.route, e.id, nil)
			e.sndQueue.PushBack(s)
			e.sndBufInQueue++

			// Mark endpoint as closed.
			e.sndClosed = true

			e.sndBufMu.Unlock()

			// Tell protocol goroutine to close.
			e.sndCloseWaker.Assert()
		}

	case e.state == StateListen:
		// Tell protocolListenLoop to stop.
		if flags&tcpip.ShutdownRead != 0 {
			e.notifyProtocolGoroutine(notifyClose)
		}

	default:
		return tcpip.ErrNotConnected
	}

	return nil
}

// Listen puts the endpoint in "listen" mode, which allows it to accept
// new connections.
func (e *endpoint) Listen(backlog int) (err *tcpip.Error) {
	e.mu.Lock()
	defer e.mu.Unlock()
	defer func() {
		if err != nil && !err.IgnoreStats() {
			e.stack.Stats().TCP.FailedConnectionAttempts.Increment()
		}
	}()

	// Allow the backlog to be adjusted if the endpoint is not shutting down.
	// When the endpoint shuts down, it sets workerCleanup to true, and from
	// that point onward, acceptedChan is the responsibility of the cleanup()
	// method (and should not be touched anywhere else, including here).
	if e.state == StateListen && !e.workerCleanup {
		// Adjust the size of the channel iff we can fix existing
		// pending connections into the new one.
		if len(e.acceptedChan) > backlog {
			return tcpip.ErrInvalidEndpointState
		}
		if cap(e.acceptedChan) == backlog {
			return nil
		}
		origChan := e.acceptedChan
		e.acceptedChan = make(chan *endpoint, backlog)
		close(origChan)
		for ep := range origChan {
			e.acceptedChan <- ep
		}
		return nil
	}

	// Endpoint must be bound before it can transition to listen mode.
	if e.state != StateBound {
		return tcpip.ErrInvalidEndpointState
	}

	// Register the endpoint.
	if err := e.stack.RegisterTransportEndpoint(e.boundNICID, e.effectiveNetProtos, ProtocolNumber, e.id, e, e.reusePort); err != nil {
		return err
	}

	e.isRegistered = true
	e.state = StateListen
	if e.acceptedChan == nil {
		e.acceptedChan = make(chan *endpoint, backlog)
	}
	e.workerRunning = true

	go e.protocolListenLoop( // S/R-SAFE: drained on save.
		seqnum.Size(e.receiveBufferAvailable()))

	return nil
}

// startAcceptedLoop sets up required state and starts a goroutine with the
// main loop for accepted connections.
func (e *endpoint) startAcceptedLoop(waiterQueue *waiter.Queue) {
	e.waiterQueue = waiterQueue
	e.workerRunning = true
	go e.protocolMainLoop(false) // S/R-SAFE: drained on save.
}

// Accept returns a new endpoint if a peer has established a connection
// to an endpoint previously set to listen mode.
func (e *endpoint) Accept() (tcpip.Endpoint, *waiter.Queue, *tcpip.Error) {
	e.mu.RLock()
	defer e.mu.RUnlock()

	// Endpoint must be in listen state before it can accept connections.
	if e.state != StateListen {
		return nil, nil, tcpip.ErrInvalidEndpointState
	}

	// Get the new accepted endpoint.
	var n *endpoint
	select {
	case n = <-e.acceptedChan:
	default:
		return nil, nil, tcpip.ErrWouldBlock
	}

	// Start the protocol goroutine.
	wq := &waiter.Queue{}
	n.startAcceptedLoop(wq)
	e.stack.Stats().TCP.PassiveConnectionOpenings.Increment()

	return n, wq, nil
}

// Bind binds the endpoint to a specific local port and optionally address.
func (e *endpoint) Bind(addr tcpip.FullAddress) (err *tcpip.Error) {
	e.mu.Lock()
	defer e.mu.Unlock()

	// Don't allow binding once endpoint is not in the initial state
	// anymore. This is because once the endpoint goes into a connected or
	// listen state, it is already bound.
	if e.state != StateInitial {
		return tcpip.ErrAlreadyBound
	}

	e.bindAddress = addr.Addr
	netProto, err := e.checkV4Mapped(&addr)
	if err != nil {
		return err
	}

	// Expand netProtos to include v4 and v6 if the caller is binding to a
	// wildcard (empty) address, and this is an IPv6 endpoint with v6only
	// set to false.
	netProtos := []tcpip.NetworkProtocolNumber{netProto}
	if netProto == header.IPv6ProtocolNumber && !e.v6only && addr.Addr == "" {
		netProtos = []tcpip.NetworkProtocolNumber{
			header.IPv6ProtocolNumber,
			header.IPv4ProtocolNumber,
		}
	}

	port, err := e.stack.ReservePort(netProtos, ProtocolNumber, addr.Addr, addr.Port, e.reusePort)
	if err != nil {
		return err
	}

	e.isPortReserved = true
	e.effectiveNetProtos = netProtos
	e.id.LocalPort = port

	// Any failures beyond this point must remove the port registration.
	defer func() {
		if err != nil {
			e.stack.ReleasePort(netProtos, ProtocolNumber, addr.Addr, port)
			e.isPortReserved = false
			e.effectiveNetProtos = nil
			e.id.LocalPort = 0
			e.id.LocalAddress = ""
			e.boundNICID = 0
		}
	}()

	// If an address is specified, we must ensure that it's one of our
	// local addresses.
	if len(addr.Addr) != 0 {
		nic := e.stack.CheckLocalAddress(addr.NIC, netProto, addr.Addr)
		if nic == 0 {
			return tcpip.ErrBadLocalAddress
		}

		e.boundNICID = nic
		e.id.LocalAddress = addr.Addr
	}

	// Mark endpoint as bound.
	e.state = StateBound

	return nil
}

// GetLocalAddress returns the address to which the endpoint is bound.
func (e *endpoint) GetLocalAddress() (tcpip.FullAddress, *tcpip.Error) {
	e.mu.RLock()
	defer e.mu.RUnlock()

	return tcpip.FullAddress{
		Addr: e.id.LocalAddress,
		Port: e.id.LocalPort,
		NIC:  e.boundNICID,
	}, nil
}

// GetRemoteAddress returns the address to which the endpoint is connected.
func (e *endpoint) GetRemoteAddress() (tcpip.FullAddress, *tcpip.Error) {
	e.mu.RLock()
	defer e.mu.RUnlock()

	if !e.state.connected() {
		return tcpip.FullAddress{}, tcpip.ErrNotConnected
	}

	return tcpip.FullAddress{
		Addr: e.id.RemoteAddress,
		Port: e.id.RemotePort,
		NIC:  e.boundNICID,
	}, nil
}

// HandlePacket is called by the stack when new packets arrive to this transport
// endpoint.
func (e *endpoint) HandlePacket(r *stack.Route, id stack.TransportEndpointID, vv buffer.VectorisedView) {
	s := newSegment(r, id, vv)
	if !s.parse() {
		e.stack.Stats().MalformedRcvdPackets.Increment()
		e.stack.Stats().TCP.InvalidSegmentsReceived.Increment()
		s.decRef()
		return
	}

	if !s.csumValid {
		e.stack.Stats().MalformedRcvdPackets.Increment()
		e.stack.Stats().TCP.ChecksumErrors.Increment()
		s.decRef()
		return
	}

	e.stack.Stats().TCP.ValidSegmentsReceived.Increment()
	if (s.flags & header.TCPFlagRst) != 0 {
		e.stack.Stats().TCP.ResetsReceived.Increment()
	}

	// Send packet to worker goroutine.
	if e.segmentQueue.enqueue(s) {
		e.newSegmentWaker.Assert()
	} else {
		// The queue is full, so we drop the segment.
		e.stack.Stats().DroppedPackets.Increment()
		s.decRef()
	}
}

// HandleControlPacket implements stack.TransportEndpoint.HandleControlPacket.
func (e *endpoint) HandleControlPacket(id stack.TransportEndpointID, typ stack.ControlType, extra uint32, vv buffer.VectorisedView) {
	switch typ {
	case stack.ControlPacketTooBig:
		e.sndBufMu.Lock()
		e.packetTooBigCount++
		if v := int(extra); v < e.sndMTU {
			e.sndMTU = v
		}
		e.sndBufMu.Unlock()

		e.notifyProtocolGoroutine(notifyMTUChanged)
	}
}

// updateSndBufferUsage is called by the protocol goroutine when room opens up
// in the send buffer. The number of newly available bytes is v.
func (e *endpoint) updateSndBufferUsage(v int) {
	e.sndBufMu.Lock()
	notify := e.sndBufUsed >= e.sndBufSize>>1
	e.sndBufUsed -= v
	// We only notify when there is half the sndBufSize available after
	// a full buffer event occurs. This ensures that we don't wake up
	// writers to queue just 1-2 segments and go back to sleep.
	notify = notify && e.sndBufUsed < e.sndBufSize>>1
	e.sndBufMu.Unlock()

	if notify {
		e.waiterQueue.Notify(waiter.EventOut)
	}
}

// readyToRead is called by the protocol goroutine when a new segment is ready
// to be read, or when the connection is closed for receiving (in which case
// s will be nil).
func (e *endpoint) readyToRead(s *segment) {
	e.rcvListMu.Lock()
	if s != nil {
		s.incRef()
		e.rcvBufUsed += s.data.Size()
		e.rcvList.PushBack(s)
	} else {
		e.rcvClosed = true
	}
	e.rcvListMu.Unlock()

	e.waiterQueue.Notify(waiter.EventIn)
}

// receiveBufferAvailable calculates how many bytes are still available in the
// receive buffer.
func (e *endpoint) receiveBufferAvailable() int {
	e.rcvListMu.Lock()
	size := e.rcvBufSize
	used := e.rcvBufUsed
	e.rcvListMu.Unlock()

	// We may use more bytes than the buffer size when the receive buffer
	// shrinks.
	if used >= size {
		return 0
	}

	return size - used
}

func (e *endpoint) receiveBufferSize() int {
	e.rcvListMu.Lock()
	size := e.rcvBufSize
	e.rcvListMu.Unlock()

	return size
}

func (e *endpoint) maxReceiveBufferSize() int {
	var rs ReceiveBufferSizeOption
	if err := e.stack.TransportProtocolOption(ProtocolNumber, &rs); err != nil {
		// As a fallback return the hardcoded max buffer size.
		return MaxBufferSize
	}
	return rs.Max
}

// rcvWndScaleForHandshake computes the receive window scale to offer to the
// peer when window scaling is enabled (true by default). If auto-tuning is
// disabled then the window scaling factor is based on the size of the
// receiveBuffer otherwise we use the max permissible receive buffer size to
// compute the scale.
func (e *endpoint) rcvWndScaleForHandshake() int {
	bufSizeForScale := e.receiveBufferSize()

	e.rcvListMu.Lock()
	autoTuningDisabled := e.rcvAutoParams.disabled
	e.rcvListMu.Unlock()
	if autoTuningDisabled {
		return FindWndScale(seqnum.Size(bufSizeForScale))
	}

	return FindWndScale(seqnum.Size(e.maxReceiveBufferSize()))
}

// updateRecentTimestamp updates the recent timestamp using the algorithm
// described in https://tools.ietf.org/html/rfc7323#section-4.3
func (e *endpoint) updateRecentTimestamp(tsVal uint32, maxSentAck seqnum.Value, segSeq seqnum.Value) {
	if e.sendTSOk && seqnum.Value(e.recentTS).LessThan(seqnum.Value(tsVal)) && segSeq.LessThanEq(maxSentAck) {
		e.recentTS = tsVal
	}
}

// maybeEnableTimestamp marks the timestamp option enabled for this endpoint if
// the SYN options indicate that timestamp option was negotiated. It also
// initializes the recentTS with the value provided in synOpts.TSval.
func (e *endpoint) maybeEnableTimestamp(synOpts *header.TCPSynOptions) {
	if synOpts.TS {
		e.sendTSOk = true
		e.recentTS = synOpts.TSVal
	}
}

// timestamp returns the timestamp value to be used in the TSVal field of the
// timestamp option for outgoing TCP segments for a given endpoint.
func (e *endpoint) timestamp() uint32 {
	return tcpTimeStamp(e.tsOffset)
}

// tcpTimeStamp returns a timestamp offset by the provided offset. This is
// not inlined above as it's used when SYN cookies are in use and endpoint
// is not created at the time when the SYN cookie is sent.
func tcpTimeStamp(offset uint32) uint32 {
	now := time.Now()
	return uint32(now.Unix()*1000+int64(now.Nanosecond()/1e6)) + offset
}

// timeStampOffset returns a randomized timestamp offset to be used when sending
// timestamp values in a timestamp option for a TCP segment.
func timeStampOffset() uint32 {
	b := make([]byte, 4)
	if _, err := rand.Read(b); err != nil {
		panic(err)
	}
	// Initialize a random tsOffset that will be added to the recentTS
	// everytime the timestamp is sent when the Timestamp option is enabled.
	//
	// See https://tools.ietf.org/html/rfc7323#section-5.4 for details on
	// why this is required.
	//
	// NOTE: This is not completely to spec as normally this should be
	// initialized in a manner analogous to how sequence numbers are
	// randomized per connection basis. But for now this is sufficient.
	return uint32(b[0]) | uint32(b[1])<<8 | uint32(b[2])<<16 | uint32(b[3])<<24
}

// maybeEnableSACKPermitted marks the SACKPermitted option enabled for this endpoint
// if the SYN options indicate that the SACK option was negotiated and the TCP
// stack is configured to enable TCP SACK option.
func (e *endpoint) maybeEnableSACKPermitted(synOpts *header.TCPSynOptions) {
	var v SACKEnabled
	if err := e.stack.TransportProtocolOption(ProtocolNumber, &v); err != nil {
		// Stack doesn't support SACK. So just return.
		return
	}
	if bool(v) && synOpts.SACKPermitted {
		e.sackPermitted = true
	}
}

// maxOptionSize return the maximum size of TCP options.
func (e *endpoint) maxOptionSize() (size int) {
	var maxSackBlocks [header.TCPMaxSACKBlocks]header.SACKBlock
	options := e.makeOptions(maxSackBlocks[:])
	size = len(options)
	putOptions(options)

	return size
}

// completeState makes a full copy of the endpoint and returns it. This is used
// before invoking the probe. The state returned may not be fully consistent if
// there are intervening syscalls when the state is being copied.
func (e *endpoint) completeState() stack.TCPEndpointState {
	var s stack.TCPEndpointState
	s.SegTime = time.Now()

	// Copy EndpointID.
	e.mu.Lock()
	s.ID = stack.TCPEndpointID(e.id)
	e.mu.Unlock()

	// Copy endpoint rcv state.
	e.rcvListMu.Lock()
	s.RcvBufSize = e.rcvBufSize
	s.RcvBufUsed = e.rcvBufUsed
	s.RcvClosed = e.rcvClosed
	s.RcvAutoParams.MeasureTime = e.rcvAutoParams.measureTime
	s.RcvAutoParams.CopiedBytes = e.rcvAutoParams.copied
	s.RcvAutoParams.PrevCopiedBytes = e.rcvAutoParams.prevCopied
	s.RcvAutoParams.RTT = e.rcvAutoParams.rtt
	s.RcvAutoParams.RTTMeasureSeqNumber = e.rcvAutoParams.rttMeasureSeqNumber
	s.RcvAutoParams.RTTMeasureTime = e.rcvAutoParams.rttMeasureTime
	s.RcvAutoParams.Disabled = e.rcvAutoParams.disabled
	e.rcvListMu.Unlock()

	// Endpoint TCP Option state.
	s.SendTSOk = e.sendTSOk
	s.RecentTS = e.recentTS
	s.TSOffset = e.tsOffset
	s.SACKPermitted = e.sackPermitted
	s.SACK.Blocks = make([]header.SACKBlock, e.sack.NumBlocks)
	copy(s.SACK.Blocks, e.sack.Blocks[:e.sack.NumBlocks])
	s.SACK.ReceivedBlocks, s.SACK.MaxSACKED = e.scoreboard.Copy()

	// Copy endpoint send state.
	e.sndBufMu.Lock()
	s.SndBufSize = e.sndBufSize
	s.SndBufUsed = e.sndBufUsed
	s.SndClosed = e.sndClosed
	s.SndBufInQueue = e.sndBufInQueue
	s.PacketTooBigCount = e.packetTooBigCount
	s.SndMTU = e.sndMTU
	e.sndBufMu.Unlock()

	// Copy receiver state.
	s.Receiver = stack.TCPReceiverState{
		RcvNxt:         e.rcv.rcvNxt,
		RcvAcc:         e.rcv.rcvAcc,
		RcvWndScale:    e.rcv.rcvWndScale,
		PendingBufUsed: e.rcv.pendingBufUsed,
		PendingBufSize: e.rcv.pendingBufSize,
	}

	// Copy sender state.
	s.Sender = stack.TCPSenderState{
		LastSendTime: e.snd.lastSendTime,
		DupAckCount:  e.snd.dupAckCount,
		FastRecovery: stack.TCPFastRecoveryState{
			Active:    e.snd.fr.active,
			First:     e.snd.fr.first,
			Last:      e.snd.fr.last,
			MaxCwnd:   e.snd.fr.maxCwnd,
			HighRxt:   e.snd.fr.highRxt,
			RescueRxt: e.snd.fr.rescueRxt,
		},
		SndCwnd:          e.snd.sndCwnd,
		Ssthresh:         e.snd.sndSsthresh,
		SndCAAckCount:    e.snd.sndCAAckCount,
		Outstanding:      e.snd.outstanding,
		SndWnd:           e.snd.sndWnd,
		SndUna:           e.snd.sndUna,
		SndNxt:           e.snd.sndNxt,
		RTTMeasureSeqNum: e.snd.rttMeasureSeqNum,
		RTTMeasureTime:   e.snd.rttMeasureTime,
		Closed:           e.snd.closed,
		RTO:              e.snd.rto,
		MaxPayloadSize:   e.snd.maxPayloadSize,
		SndWndScale:      e.snd.sndWndScale,
		MaxSentAck:       e.snd.maxSentAck,
	}
	e.snd.rtt.Lock()
	s.Sender.SRTT = e.snd.rtt.srtt
	s.Sender.SRTTInited = e.snd.rtt.srttInited
	e.snd.rtt.Unlock()

	if cubic, ok := e.snd.cc.(*cubicState); ok {
		s.Sender.Cubic = stack.TCPCubicState{
			WMax:                    cubic.wMax,
			WLastMax:                cubic.wLastMax,
			T:                       cubic.t,
			TimeSinceLastCongestion: time.Since(cubic.t),
			C:                       cubic.c,
			K:                       cubic.k,
			Beta:                    cubic.beta,
			WC:                      cubic.wC,
			WEst:                    cubic.wEst,
		}
	}
	return s
}

func (e *endpoint) initGSO() {
	if e.route.Capabilities()&stack.CapabilityGSO == 0 {
		return
	}

	gso := &stack.GSO{}
	switch e.route.NetProto {
	case header.IPv4ProtocolNumber:
		gso.Type = stack.GSOTCPv4
		gso.L3HdrLen = header.IPv4MinimumSize
	case header.IPv6ProtocolNumber:
		gso.Type = stack.GSOTCPv6
		gso.L3HdrLen = header.IPv6MinimumSize
	default:
		panic(fmt.Sprintf("Unknown netProto: %v", e.netProto))
	}
	gso.NeedsCsum = true
	gso.CsumOffset = header.TCPChecksumOffset
	gso.MaxSize = e.route.GSOMaxSize()
	e.gso = gso
}

// State implements tcpip.Endpoint.State. It exports the endpoint's protocol
// state for diagnostics.
func (e *endpoint) State() uint32 {
	e.mu.Lock()
	defer e.mu.Unlock()
	return uint32(e.state)
}

func mssForRoute(r *stack.Route) uint16 {
	return uint16(r.MTU() - header.TCPMinimumSize)
}