1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package tcp
import (
"sync"
"time"
"gvisor.dev/gvisor/pkg/rand"
"gvisor.dev/gvisor/pkg/sleep"
"gvisor.dev/gvisor/pkg/tcpip"
"gvisor.dev/gvisor/pkg/tcpip/buffer"
"gvisor.dev/gvisor/pkg/tcpip/header"
"gvisor.dev/gvisor/pkg/tcpip/seqnum"
"gvisor.dev/gvisor/pkg/tcpip/stack"
"gvisor.dev/gvisor/pkg/waiter"
)
// maxSegmentsPerWake is the maximum number of segments to process in the main
// protocol goroutine per wake-up. Yielding [after this number of segments are
// processed] allows other events to be processed as well (e.g., timeouts,
// resets, etc.).
const maxSegmentsPerWake = 100
type handshakeState int
// The following are the possible states of the TCP connection during a 3-way
// handshake. A depiction of the states and transitions can be found in RFC 793,
// page 23.
const (
handshakeSynSent handshakeState = iota
handshakeSynRcvd
handshakeCompleted
)
// The following are used to set up sleepers.
const (
wakerForNotification = iota
wakerForNewSegment
wakerForResend
wakerForResolution
)
const (
// Maximum space available for options.
maxOptionSize = 40
)
// handshake holds the state used during a TCP 3-way handshake.
type handshake struct {
ep *endpoint
state handshakeState
active bool
flags uint8
ackNum seqnum.Value
// iss is the initial send sequence number, as defined in RFC 793.
iss seqnum.Value
// rcvWnd is the receive window, as defined in RFC 793.
rcvWnd seqnum.Size
// sndWnd is the send window, as defined in RFC 793.
sndWnd seqnum.Size
// mss is the maximum segment size received from the peer.
mss uint16
// amss is the maximum segment size advertised by us to the peer.
amss uint16
// sndWndScale is the send window scale, as defined in RFC 1323. A
// negative value means no scaling is supported by the peer.
sndWndScale int
// rcvWndScale is the receive window scale, as defined in RFC 1323.
rcvWndScale int
}
func newHandshake(ep *endpoint, rcvWnd seqnum.Size) handshake {
rcvWndScale := ep.rcvWndScaleForHandshake()
// Round-down the rcvWnd to a multiple of wndScale. This ensures that the
// window offered in SYN won't be reduced due to the loss of precision if
// window scaling is enabled after the handshake.
rcvWnd = (rcvWnd >> uint8(rcvWndScale)) << uint8(rcvWndScale)
// Ensure we can always accept at least 1 byte if the scale specified
// was too high for the provided rcvWnd.
if rcvWnd == 0 {
rcvWnd = 1
}
h := handshake{
ep: ep,
active: true,
rcvWnd: rcvWnd,
rcvWndScale: int(rcvWndScale),
}
h.resetState()
return h
}
// FindWndScale determines the window scale to use for the given maximum window
// size.
func FindWndScale(wnd seqnum.Size) int {
if wnd < 0x10000 {
return 0
}
max := seqnum.Size(0xffff)
s := 0
for wnd > max && s < header.MaxWndScale {
s++
max <<= 1
}
return s
}
// resetState resets the state of the handshake object such that it becomes
// ready for a new 3-way handshake.
func (h *handshake) resetState() {
b := make([]byte, 4)
if _, err := rand.Read(b); err != nil {
panic(err)
}
h.state = handshakeSynSent
h.flags = header.TCPFlagSyn
h.ackNum = 0
h.mss = 0
h.iss = seqnum.Value(uint32(b[0]) | uint32(b[1])<<8 | uint32(b[2])<<16 | uint32(b[3])<<24)
}
// effectiveRcvWndScale returns the effective receive window scale to be used.
// If the peer doesn't support window scaling, the effective rcv wnd scale is
// zero; otherwise it's the value calculated based on the initial rcv wnd.
func (h *handshake) effectiveRcvWndScale() uint8 {
if h.sndWndScale < 0 {
return 0
}
return uint8(h.rcvWndScale)
}
// resetToSynRcvd resets the state of the handshake object to the SYN-RCVD
// state.
func (h *handshake) resetToSynRcvd(iss seqnum.Value, irs seqnum.Value, opts *header.TCPSynOptions) {
h.active = false
h.state = handshakeSynRcvd
h.flags = header.TCPFlagSyn | header.TCPFlagAck
h.iss = iss
h.ackNum = irs + 1
h.mss = opts.MSS
h.sndWndScale = opts.WS
h.ep.mu.Lock()
h.ep.state = StateSynRecv
h.ep.mu.Unlock()
}
// checkAck checks if the ACK number, if present, of a segment received during
// a TCP 3-way handshake is valid. If it's not, a RST segment is sent back in
// response.
func (h *handshake) checkAck(s *segment) bool {
if s.flagIsSet(header.TCPFlagAck) && s.ackNumber != h.iss+1 {
// RFC 793, page 36, states that a reset must be generated when
// the connection is in any non-synchronized state and an
// incoming segment acknowledges something not yet sent. The
// connection remains in the same state.
ack := s.sequenceNumber.Add(s.logicalLen())
h.ep.sendRaw(buffer.VectorisedView{}, header.TCPFlagRst|header.TCPFlagAck, s.ackNumber, ack, 0)
return false
}
return true
}
// synSentState handles a segment received when the TCP 3-way handshake is in
// the SYN-SENT state.
func (h *handshake) synSentState(s *segment) *tcpip.Error {
// RFC 793, page 37, states that in the SYN-SENT state, a reset is
// acceptable if the ack field acknowledges the SYN.
if s.flagIsSet(header.TCPFlagRst) {
if s.flagIsSet(header.TCPFlagAck) && s.ackNumber == h.iss+1 {
return tcpip.ErrConnectionRefused
}
return nil
}
if !h.checkAck(s) {
return nil
}
// We are in the SYN-SENT state. We only care about segments that have
// the SYN flag.
if !s.flagIsSet(header.TCPFlagSyn) {
return nil
}
// Parse the SYN options.
rcvSynOpts := parseSynSegmentOptions(s)
// Remember if the Timestamp option was negotiated.
h.ep.maybeEnableTimestamp(&rcvSynOpts)
// Remember if the SACKPermitted option was negotiated.
h.ep.maybeEnableSACKPermitted(&rcvSynOpts)
// Remember the sequence we'll ack from now on.
h.ackNum = s.sequenceNumber + 1
h.flags |= header.TCPFlagAck
h.mss = rcvSynOpts.MSS
h.sndWndScale = rcvSynOpts.WS
// If this is a SYN ACK response, we only need to acknowledge the SYN
// and the handshake is completed.
if s.flagIsSet(header.TCPFlagAck) {
h.state = handshakeCompleted
h.ep.sendRaw(buffer.VectorisedView{}, header.TCPFlagAck, h.iss+1, h.ackNum, h.rcvWnd>>h.effectiveRcvWndScale())
return nil
}
// A SYN segment was received, but no ACK in it. We acknowledge the SYN
// but resend our own SYN and wait for it to be acknowledged in the
// SYN-RCVD state.
h.state = handshakeSynRcvd
h.ep.mu.Lock()
h.ep.state = StateSynRecv
ttl := h.ep.ttl
h.ep.mu.Unlock()
synOpts := header.TCPSynOptions{
WS: int(h.effectiveRcvWndScale()),
TS: rcvSynOpts.TS,
TSVal: h.ep.timestamp(),
TSEcr: h.ep.recentTS,
// We only send SACKPermitted if the other side indicated it
// permits SACK. This is not explicitly defined in the RFC but
// this is the behaviour implemented by Linux.
SACKPermitted: rcvSynOpts.SACKPermitted,
MSS: h.ep.amss,
}
if ttl == 0 {
ttl = s.route.DefaultTTL()
}
h.ep.sendSynTCP(&s.route, h.ep.ID, ttl, h.ep.sendTOS, h.flags, h.iss, h.ackNum, h.rcvWnd, synOpts)
return nil
}
// synRcvdState handles a segment received when the TCP 3-way handshake is in
// the SYN-RCVD state.
func (h *handshake) synRcvdState(s *segment) *tcpip.Error {
if s.flagIsSet(header.TCPFlagRst) {
// RFC 793, page 37, states that in the SYN-RCVD state, a reset
// is acceptable if the sequence number is in the window.
if s.sequenceNumber.InWindow(h.ackNum, h.rcvWnd) {
return tcpip.ErrConnectionRefused
}
return nil
}
if !h.checkAck(s) {
return nil
}
if s.flagIsSet(header.TCPFlagSyn) && s.sequenceNumber != h.ackNum-1 {
// We received two SYN segments with different sequence
// numbers, so we reset this and restart the whole
// process, except that we don't reset the timer.
ack := s.sequenceNumber.Add(s.logicalLen())
seq := seqnum.Value(0)
if s.flagIsSet(header.TCPFlagAck) {
seq = s.ackNumber
}
h.ep.sendRaw(buffer.VectorisedView{}, header.TCPFlagRst|header.TCPFlagAck, seq, ack, 0)
if !h.active {
return tcpip.ErrInvalidEndpointState
}
h.resetState()
synOpts := header.TCPSynOptions{
WS: h.rcvWndScale,
TS: h.ep.sendTSOk,
TSVal: h.ep.timestamp(),
TSEcr: h.ep.recentTS,
SACKPermitted: h.ep.sackPermitted,
MSS: h.ep.amss,
}
h.ep.sendSynTCP(&s.route, h.ep.ID, h.ep.ttl, h.ep.sendTOS, h.flags, h.iss, h.ackNum, h.rcvWnd, synOpts)
return nil
}
// We have previously received (and acknowledged) the peer's SYN. If the
// peer acknowledges our SYN, the handshake is completed.
if s.flagIsSet(header.TCPFlagAck) {
// If the timestamp option is negotiated and the segment does
// not carry a timestamp option then the segment must be dropped
// as per https://tools.ietf.org/html/rfc7323#section-3.2.
if h.ep.sendTSOk && !s.parsedOptions.TS {
h.ep.stack.Stats().DroppedPackets.Increment()
return nil
}
// Update timestamp if required. See RFC7323, section-4.3.
if h.ep.sendTSOk && s.parsedOptions.TS {
h.ep.updateRecentTimestamp(s.parsedOptions.TSVal, h.ackNum, s.sequenceNumber)
}
h.state = handshakeCompleted
return nil
}
return nil
}
func (h *handshake) handleSegment(s *segment) *tcpip.Error {
h.sndWnd = s.window
if !s.flagIsSet(header.TCPFlagSyn) && h.sndWndScale > 0 {
h.sndWnd <<= uint8(h.sndWndScale)
}
switch h.state {
case handshakeSynRcvd:
return h.synRcvdState(s)
case handshakeSynSent:
return h.synSentState(s)
}
return nil
}
// processSegments goes through the segment queue and processes up to
// maxSegmentsPerWake (if they're available).
func (h *handshake) processSegments() *tcpip.Error {
for i := 0; i < maxSegmentsPerWake; i++ {
s := h.ep.segmentQueue.dequeue()
if s == nil {
return nil
}
err := h.handleSegment(s)
s.decRef()
if err != nil {
return err
}
// We stop processing packets once the handshake is completed,
// otherwise we may process packets meant to be processed by
// the main protocol goroutine.
if h.state == handshakeCompleted {
break
}
}
// If the queue is not empty, make sure we'll wake up in the next
// iteration.
if !h.ep.segmentQueue.empty() {
h.ep.newSegmentWaker.Assert()
}
return nil
}
func (h *handshake) resolveRoute() *tcpip.Error {
// Set up the wakers.
s := sleep.Sleeper{}
resolutionWaker := &sleep.Waker{}
s.AddWaker(resolutionWaker, wakerForResolution)
s.AddWaker(&h.ep.notificationWaker, wakerForNotification)
defer s.Done()
// Initial action is to resolve route.
index := wakerForResolution
for {
switch index {
case wakerForResolution:
if _, err := h.ep.route.Resolve(resolutionWaker); err != tcpip.ErrWouldBlock {
if err == tcpip.ErrNoLinkAddress {
h.ep.stats.SendErrors.NoLinkAddr.Increment()
} else if err != nil {
h.ep.stats.SendErrors.NoRoute.Increment()
}
// Either success (err == nil) or failure.
return err
}
// Resolution not completed. Keep trying...
case wakerForNotification:
n := h.ep.fetchNotifications()
if n¬ifyClose != 0 {
h.ep.route.RemoveWaker(resolutionWaker)
return tcpip.ErrAborted
}
if n¬ifyDrain != 0 {
close(h.ep.drainDone)
<-h.ep.undrain
}
}
// Wait for notification.
index, _ = s.Fetch(true)
}
}
// execute executes the TCP 3-way handshake.
func (h *handshake) execute() *tcpip.Error {
if h.ep.route.IsResolutionRequired() {
if err := h.resolveRoute(); err != nil {
return err
}
}
// Initialize the resend timer.
resendWaker := sleep.Waker{}
timeOut := time.Duration(time.Second)
rt := time.AfterFunc(timeOut, func() {
resendWaker.Assert()
})
defer rt.Stop()
// Set up the wakers.
s := sleep.Sleeper{}
s.AddWaker(&resendWaker, wakerForResend)
s.AddWaker(&h.ep.notificationWaker, wakerForNotification)
s.AddWaker(&h.ep.newSegmentWaker, wakerForNewSegment)
defer s.Done()
var sackEnabled SACKEnabled
if err := h.ep.stack.TransportProtocolOption(ProtocolNumber, &sackEnabled); err != nil {
// If stack returned an error when checking for SACKEnabled
// status then just default to switching off SACK negotiation.
sackEnabled = false
}
// Send the initial SYN segment and loop until the handshake is
// completed.
h.ep.amss = mssForRoute(&h.ep.route)
synOpts := header.TCPSynOptions{
WS: h.rcvWndScale,
TS: true,
TSVal: h.ep.timestamp(),
TSEcr: h.ep.recentTS,
SACKPermitted: bool(sackEnabled),
MSS: h.ep.amss,
}
// Execute is also called in a listen context so we want to make sure we
// only send the TS/SACK option when we received the TS/SACK in the
// initial SYN.
if h.state == handshakeSynRcvd {
synOpts.TS = h.ep.sendTSOk
synOpts.SACKPermitted = h.ep.sackPermitted && bool(sackEnabled)
if h.sndWndScale < 0 {
// Disable window scaling if the peer did not send us
// the window scaling option.
synOpts.WS = -1
}
}
h.ep.sendSynTCP(&h.ep.route, h.ep.ID, h.ep.ttl, h.ep.sendTOS, h.flags, h.iss, h.ackNum, h.rcvWnd, synOpts)
for h.state != handshakeCompleted {
switch index, _ := s.Fetch(true); index {
case wakerForResend:
timeOut *= 2
if timeOut > 60*time.Second {
return tcpip.ErrTimeout
}
rt.Reset(timeOut)
h.ep.sendSynTCP(&h.ep.route, h.ep.ID, h.ep.ttl, h.ep.sendTOS, h.flags, h.iss, h.ackNum, h.rcvWnd, synOpts)
case wakerForNotification:
n := h.ep.fetchNotifications()
if n¬ifyClose != 0 {
return tcpip.ErrAborted
}
if n¬ifyDrain != 0 {
for !h.ep.segmentQueue.empty() {
s := h.ep.segmentQueue.dequeue()
err := h.handleSegment(s)
s.decRef()
if err != nil {
return err
}
if h.state == handshakeCompleted {
return nil
}
}
close(h.ep.drainDone)
<-h.ep.undrain
}
case wakerForNewSegment:
if err := h.processSegments(); err != nil {
return err
}
}
}
return nil
}
func parseSynSegmentOptions(s *segment) header.TCPSynOptions {
synOpts := header.ParseSynOptions(s.options, s.flagIsSet(header.TCPFlagAck))
if synOpts.TS {
s.parsedOptions.TSVal = synOpts.TSVal
s.parsedOptions.TSEcr = synOpts.TSEcr
}
return synOpts
}
var optionPool = sync.Pool{
New: func() interface{} {
return make([]byte, maxOptionSize)
},
}
func getOptions() []byte {
return optionPool.Get().([]byte)
}
func putOptions(options []byte) {
// Reslice to full capacity.
optionPool.Put(options[0:cap(options)])
}
func makeSynOptions(opts header.TCPSynOptions) []byte {
// Emulate linux option order. This is as follows:
//
// if md5: NOP NOP MD5SIG 18 md5sig(16)
// if mss: MSS 4 mss(2)
// if ts and sack_advertise:
// SACK 2 TIMESTAMP 2 timestamp(8)
// elif ts: NOP NOP TIMESTAMP 10 timestamp(8)
// elif sack: NOP NOP SACK 2
// if wscale: NOP WINDOW 3 ws(1)
// if sack_blocks: NOP NOP SACK ((2 + (#blocks * 8))
// [for each block] start_seq(4) end_seq(4)
// if fastopen_cookie:
// if exp: EXP (4 + len(cookie)) FASTOPEN_MAGIC(2)
// else: FASTOPEN (2 + len(cookie))
// cookie(variable) [padding to four bytes]
//
options := getOptions()
// Always encode the mss.
offset := header.EncodeMSSOption(uint32(opts.MSS), options)
// Special ordering is required here. If both TS and SACK are enabled,
// then the SACK option precedes TS, with no padding. If they are
// enabled individually, then we see padding before the option.
if opts.TS && opts.SACKPermitted {
offset += header.EncodeSACKPermittedOption(options[offset:])
offset += header.EncodeTSOption(opts.TSVal, opts.TSEcr, options[offset:])
} else if opts.TS {
offset += header.EncodeNOP(options[offset:])
offset += header.EncodeNOP(options[offset:])
offset += header.EncodeTSOption(opts.TSVal, opts.TSEcr, options[offset:])
} else if opts.SACKPermitted {
offset += header.EncodeNOP(options[offset:])
offset += header.EncodeNOP(options[offset:])
offset += header.EncodeSACKPermittedOption(options[offset:])
}
// Initialize the WS option.
if opts.WS >= 0 {
offset += header.EncodeNOP(options[offset:])
offset += header.EncodeWSOption(opts.WS, options[offset:])
}
// Padding to the end; note that this never apply unless we add a
// fastopen option, we always expect the offset to remain the same.
if delta := header.AddTCPOptionPadding(options, offset); delta != 0 {
panic("unexpected option encoding")
}
return options[:offset]
}
func (e *endpoint) sendSynTCP(r *stack.Route, id stack.TransportEndpointID, ttl, tos uint8, flags byte, seq, ack seqnum.Value, rcvWnd seqnum.Size, opts header.TCPSynOptions) *tcpip.Error {
options := makeSynOptions(opts)
// We ignore SYN send errors and let the callers re-attempt send.
if err := e.sendTCP(r, id, buffer.VectorisedView{}, ttl, tos, flags, seq, ack, rcvWnd, options, nil); err != nil {
e.stats.SendErrors.SynSendToNetworkFailed.Increment()
}
putOptions(options)
return nil
}
func (e *endpoint) sendTCP(r *stack.Route, id stack.TransportEndpointID, data buffer.VectorisedView, ttl, tos uint8, flags byte, seq, ack seqnum.Value, rcvWnd seqnum.Size, opts []byte, gso *stack.GSO) *tcpip.Error {
if err := sendTCP(r, id, data, ttl, tos, flags, seq, ack, rcvWnd, opts, gso); err != nil {
e.stats.SendErrors.SegmentSendToNetworkFailed.Increment()
return err
}
e.stats.SegmentsSent.Increment()
return nil
}
// sendTCP sends a TCP segment with the provided options via the provided
// network endpoint and under the provided identity.
func sendTCP(r *stack.Route, id stack.TransportEndpointID, data buffer.VectorisedView, ttl, tos uint8, flags byte, seq, ack seqnum.Value, rcvWnd seqnum.Size, opts []byte, gso *stack.GSO) *tcpip.Error {
optLen := len(opts)
// Allocate a buffer for the TCP header.
hdr := buffer.NewPrependable(header.TCPMinimumSize + int(r.MaxHeaderLength()) + optLen)
if rcvWnd > 0xffff {
rcvWnd = 0xffff
}
// Initialize the header.
tcp := header.TCP(hdr.Prepend(header.TCPMinimumSize + optLen))
tcp.Encode(&header.TCPFields{
SrcPort: id.LocalPort,
DstPort: id.RemotePort,
SeqNum: uint32(seq),
AckNum: uint32(ack),
DataOffset: uint8(header.TCPMinimumSize + optLen),
Flags: flags,
WindowSize: uint16(rcvWnd),
})
copy(tcp[header.TCPMinimumSize:], opts)
length := uint16(hdr.UsedLength() + data.Size())
xsum := r.PseudoHeaderChecksum(ProtocolNumber, length)
// Only calculate the checksum if offloading isn't supported.
if gso != nil && gso.NeedsCsum {
// This is called CHECKSUM_PARTIAL in the Linux kernel. We
// calculate a checksum of the pseudo-header and save it in the
// TCP header, then the kernel calculate a checksum of the
// header and data and get the right sum of the TCP packet.
tcp.SetChecksum(xsum)
} else if r.Capabilities()&stack.CapabilityTXChecksumOffload == 0 {
xsum = header.ChecksumVV(data, xsum)
tcp.SetChecksum(^tcp.CalculateChecksum(xsum))
}
if ttl == 0 {
ttl = r.DefaultTTL()
}
if err := r.WritePacket(gso, hdr, data, stack.NetworkHeaderParams{Protocol: ProtocolNumber, TTL: ttl, TOS: tos}); err != nil {
r.Stats().TCP.SegmentSendErrors.Increment()
return err
}
r.Stats().TCP.SegmentsSent.Increment()
if (flags & header.TCPFlagRst) != 0 {
r.Stats().TCP.ResetsSent.Increment()
}
return nil
}
// makeOptions makes an options slice.
func (e *endpoint) makeOptions(sackBlocks []header.SACKBlock) []byte {
options := getOptions()
offset := 0
// N.B. the ordering here matches the ordering used by Linux internally
// and described in the raw makeOptions function. We don't include
// unnecessary cases here (post connection.)
if e.sendTSOk {
// Embed the timestamp if timestamp has been enabled.
//
// We only use the lower 32 bits of the unix time in
// milliseconds. This is similar to what Linux does where it
// uses the lower 32 bits of the jiffies value in the tsVal
// field of the timestamp option.
//
// Further, RFC7323 section-5.4 recommends millisecond
// resolution as the lowest recommended resolution for the
// timestamp clock.
//
// Ref: https://tools.ietf.org/html/rfc7323#section-5.4.
offset += header.EncodeNOP(options[offset:])
offset += header.EncodeNOP(options[offset:])
offset += header.EncodeTSOption(e.timestamp(), uint32(e.recentTS), options[offset:])
}
if e.sackPermitted && len(sackBlocks) > 0 {
offset += header.EncodeNOP(options[offset:])
offset += header.EncodeNOP(options[offset:])
offset += header.EncodeSACKBlocks(sackBlocks, options[offset:])
}
// We expect the above to produce an aligned offset.
if delta := header.AddTCPOptionPadding(options, offset); delta != 0 {
panic("unexpected option encoding")
}
return options[:offset]
}
// sendRaw sends a TCP segment to the endpoint's peer.
func (e *endpoint) sendRaw(data buffer.VectorisedView, flags byte, seq, ack seqnum.Value, rcvWnd seqnum.Size) *tcpip.Error {
var sackBlocks []header.SACKBlock
if e.state == StateEstablished && e.rcv.pendingBufSize > 0 && (flags&header.TCPFlagAck != 0) {
sackBlocks = e.sack.Blocks[:e.sack.NumBlocks]
}
options := e.makeOptions(sackBlocks)
err := e.sendTCP(&e.route, e.ID, data, e.ttl, e.sendTOS, flags, seq, ack, rcvWnd, options, e.gso)
putOptions(options)
return err
}
func (e *endpoint) handleWrite() *tcpip.Error {
// Move packets from send queue to send list. The queue is accessible
// from other goroutines and protected by the send mutex, while the send
// list is only accessible from the handler goroutine, so it needs no
// mutexes.
e.sndBufMu.Lock()
first := e.sndQueue.Front()
if first != nil {
e.snd.writeList.PushBackList(&e.sndQueue)
e.snd.sndNxtList.UpdateForward(e.sndBufInQueue)
e.sndBufInQueue = 0
}
e.sndBufMu.Unlock()
// Initialize the next segment to write if it's currently nil.
if e.snd.writeNext == nil {
e.snd.writeNext = first
}
// Push out any new packets.
e.snd.sendData()
return nil
}
func (e *endpoint) handleClose() *tcpip.Error {
// Drain the send queue.
e.handleWrite()
// Mark send side as closed.
e.snd.closed = true
return nil
}
// resetConnectionLocked puts the endpoint in an error state with the given
// error code and sends a RST if and only if the error is not ErrConnectionReset
// indicating that the connection is being reset due to receiving a RST. This
// method must only be called from the protocol goroutine.
func (e *endpoint) resetConnectionLocked(err *tcpip.Error) {
// Only send a reset if the connection is being aborted for a reason
// other than receiving a reset.
e.state = StateError
e.HardError = err
if err != tcpip.ErrConnectionReset {
e.sendRaw(buffer.VectorisedView{}, header.TCPFlagAck|header.TCPFlagRst, e.snd.sndUna, e.rcv.rcvNxt, 0)
}
}
// completeWorkerLocked is called by the worker goroutine when it's about to
// exit. It marks the worker as completed and performs cleanup work if requested
// by Close().
func (e *endpoint) completeWorkerLocked() {
e.workerRunning = false
if e.workerCleanup {
e.cleanupLocked()
}
}
// handleSegments pulls segments from the queue and processes them. It returns
// no error if the protocol loop should continue, an error otherwise.
func (e *endpoint) handleSegments() *tcpip.Error {
checkRequeue := true
for i := 0; i < maxSegmentsPerWake; i++ {
s := e.segmentQueue.dequeue()
if s == nil {
checkRequeue = false
break
}
// Invoke the tcp probe if installed.
if e.probe != nil {
e.probe(e.completeState())
}
if s.flagIsSet(header.TCPFlagRst) {
if e.rcv.acceptable(s.sequenceNumber, 0) {
// RFC 793, page 37 states that "in all states
// except SYN-SENT, all reset (RST) segments are
// validated by checking their SEQ-fields." So
// we only process it if it's acceptable.
s.decRef()
return tcpip.ErrConnectionReset
}
} else if s.flagIsSet(header.TCPFlagAck) {
// Patch the window size in the segment according to the
// send window scale.
s.window <<= e.snd.sndWndScale
// RFC 793, page 41 states that "once in the ESTABLISHED
// state all segments must carry current acknowledgment
// information."
e.rcv.handleRcvdSegment(s)
e.snd.handleRcvdSegment(s)
}
s.decRef()
}
// If the queue is not empty, make sure we'll wake up in the next
// iteration.
if checkRequeue && !e.segmentQueue.empty() {
e.newSegmentWaker.Assert()
}
// Send an ACK for all processed packets if needed.
if e.rcv.rcvNxt != e.snd.maxSentAck {
e.snd.sendAck()
}
e.resetKeepaliveTimer(true)
return nil
}
// keepaliveTimerExpired is called when the keepaliveTimer fires. We send TCP
// keepalive packets periodically when the connection is idle. If we don't hear
// from the other side after a number of tries, we terminate the connection.
func (e *endpoint) keepaliveTimerExpired() *tcpip.Error {
e.keepalive.Lock()
if !e.keepalive.enabled || !e.keepalive.timer.checkExpiration() {
e.keepalive.Unlock()
return nil
}
if e.keepalive.unacked >= e.keepalive.count {
e.keepalive.Unlock()
return tcpip.ErrTimeout
}
// RFC1122 4.2.3.6: TCP keepalive is a dataless ACK with
// seg.seq = snd.nxt-1.
e.keepalive.unacked++
e.keepalive.Unlock()
e.snd.sendSegmentFromView(buffer.VectorisedView{}, header.TCPFlagAck, e.snd.sndNxt-1)
e.resetKeepaliveTimer(false)
return nil
}
// resetKeepaliveTimer restarts or stops the keepalive timer, depending on
// whether it is enabled for this endpoint.
func (e *endpoint) resetKeepaliveTimer(receivedData bool) {
e.keepalive.Lock()
defer e.keepalive.Unlock()
if receivedData {
e.keepalive.unacked = 0
}
// Start the keepalive timer IFF it's enabled and there is no pending
// data to send.
if !e.keepalive.enabled || e.snd == nil || e.snd.sndUna != e.snd.sndNxt {
e.keepalive.timer.disable()
return
}
if e.keepalive.unacked > 0 {
e.keepalive.timer.enable(e.keepalive.interval)
} else {
e.keepalive.timer.enable(e.keepalive.idle)
}
}
// disableKeepaliveTimer stops the keepalive timer.
func (e *endpoint) disableKeepaliveTimer() {
e.keepalive.Lock()
e.keepalive.timer.disable()
e.keepalive.Unlock()
}
// protocolMainLoop is the main loop of the TCP protocol. It runs in its own
// goroutine and is responsible for sending segments and handling received
// segments.
func (e *endpoint) protocolMainLoop(handshake bool) *tcpip.Error {
var closeTimer *time.Timer
var closeWaker sleep.Waker
epilogue := func() {
// e.mu is expected to be hold upon entering this section.
if e.snd != nil {
e.snd.resendTimer.cleanup()
}
if closeTimer != nil {
closeTimer.Stop()
}
e.completeWorkerLocked()
if e.drainDone != nil {
close(e.drainDone)
}
e.mu.Unlock()
// When the protocol loop exits we should wake up our waiters.
e.waiterQueue.Notify(waiter.EventHUp | waiter.EventErr | waiter.EventIn | waiter.EventOut)
}
if handshake {
// This is an active connection, so we must initiate the 3-way
// handshake, and then inform potential waiters about its
// completion.
initialRcvWnd := e.initialReceiveWindow()
h := newHandshake(e, seqnum.Size(initialRcvWnd))
e.mu.Lock()
h.ep.state = StateSynSent
e.mu.Unlock()
if err := h.execute(); err != nil {
e.lastErrorMu.Lock()
e.lastError = err
e.lastErrorMu.Unlock()
e.mu.Lock()
e.state = StateError
e.HardError = err
// Lock released below.
epilogue()
return err
}
// Transfer handshake state to TCP connection. We disable
// receive window scaling if the peer doesn't support it
// (indicated by a negative send window scale).
e.snd = newSender(e, h.iss, h.ackNum-1, h.sndWnd, h.mss, h.sndWndScale)
rcvBufSize := seqnum.Size(e.receiveBufferSize())
e.rcvListMu.Lock()
e.rcv = newReceiver(e, h.ackNum-1, h.rcvWnd, h.effectiveRcvWndScale(), rcvBufSize)
// boot strap the auto tuning algorithm. Starting at zero will
// result in a large step function on the first proper causing
// the window to just go to a really large value after the first
// RTT itself.
e.rcvAutoParams.prevCopied = initialRcvWnd
e.rcvListMu.Unlock()
}
e.keepalive.timer.init(&e.keepalive.waker)
defer e.keepalive.timer.cleanup()
// Tell waiters that the endpoint is connected and writable.
e.mu.Lock()
e.state = StateEstablished
drained := e.drainDone != nil
e.mu.Unlock()
if drained {
close(e.drainDone)
<-e.undrain
}
e.waiterQueue.Notify(waiter.EventOut)
// Set up the functions that will be called when the main protocol loop
// wakes up.
funcs := []struct {
w *sleep.Waker
f func() *tcpip.Error
}{
{
w: &e.sndWaker,
f: e.handleWrite,
},
{
w: &e.sndCloseWaker,
f: e.handleClose,
},
{
w: &e.newSegmentWaker,
f: e.handleSegments,
},
{
w: &closeWaker,
f: func() *tcpip.Error {
return tcpip.ErrConnectionAborted
},
},
{
w: &e.snd.resendWaker,
f: func() *tcpip.Error {
if !e.snd.retransmitTimerExpired() {
return tcpip.ErrTimeout
}
return nil
},
},
{
w: &e.keepalive.waker,
f: e.keepaliveTimerExpired,
},
{
w: &e.notificationWaker,
f: func() *tcpip.Error {
n := e.fetchNotifications()
if n¬ifyNonZeroReceiveWindow != 0 {
e.rcv.nonZeroWindow()
}
if n¬ifyReceiveWindowChanged != 0 {
e.rcv.pendingBufSize = seqnum.Size(e.receiveBufferSize())
}
if n¬ifyMTUChanged != 0 {
e.sndBufMu.Lock()
count := e.packetTooBigCount
e.packetTooBigCount = 0
mtu := e.sndMTU
e.sndBufMu.Unlock()
e.snd.updateMaxPayloadSize(mtu, count)
}
if n¬ifyReset != 0 {
e.mu.Lock()
e.resetConnectionLocked(tcpip.ErrConnectionAborted)
e.mu.Unlock()
}
if n¬ifyClose != 0 && closeTimer == nil {
// Reset the connection 3 seconds after
// the endpoint has been closed.
//
// The timer could fire in background
// when the endpoint is drained. That's
// OK as the loop here will not honor
// the firing until the undrain arrives.
closeTimer = time.AfterFunc(3*time.Second, func() {
closeWaker.Assert()
})
}
if n¬ifyKeepaliveChanged != 0 {
// The timer could fire in background
// when the endpoint is drained. That's
// OK. See above.
e.resetKeepaliveTimer(true)
}
if n¬ifyDrain != 0 {
for !e.segmentQueue.empty() {
if err := e.handleSegments(); err != nil {
return err
}
}
if e.state != StateError {
close(e.drainDone)
<-e.undrain
}
}
return nil
},
},
}
// Initialize the sleeper based on the wakers in funcs.
s := sleep.Sleeper{}
for i := range funcs {
s.AddWaker(funcs[i].w, i)
}
// The following assertions and notifications are needed for restored
// endpoints. Fresh newly created endpoints have empty states and should
// not invoke any.
e.segmentQueue.mu.Lock()
if !e.segmentQueue.list.Empty() {
e.newSegmentWaker.Assert()
}
e.segmentQueue.mu.Unlock()
e.rcvListMu.Lock()
if !e.rcvList.Empty() {
e.waiterQueue.Notify(waiter.EventIn)
}
e.rcvListMu.Unlock()
e.mu.RLock()
if e.workerCleanup {
e.notifyProtocolGoroutine(notifyClose)
}
e.mu.RUnlock()
// Main loop. Handle segments until both send and receive ends of the
// connection have completed.
for !e.rcv.closed || !e.snd.closed || e.snd.sndUna != e.snd.sndNxtList {
e.workMu.Unlock()
v, _ := s.Fetch(true)
e.workMu.Lock()
if err := funcs[v].f(); err != nil {
e.mu.Lock()
// Ensure we release all endpoint registration and route
// references as the connection is now in an error
// state.
e.workerCleanup = true
e.resetConnectionLocked(err)
// Lock released below.
epilogue()
return nil
}
}
// Mark endpoint as closed.
e.mu.Lock()
if e.state != StateError {
e.state = StateClose
}
// Lock released below.
epilogue()
return nil
}
|