1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package stack
import (
"gvisor.dev/gvisor/pkg/sleep"
"gvisor.dev/gvisor/pkg/tcpip"
"gvisor.dev/gvisor/pkg/tcpip/header"
)
// Route represents a route through the networking stack to a given destination.
type Route struct {
// RemoteAddress is the final destination of the route.
RemoteAddress tcpip.Address
// RemoteLinkAddress is the link-layer (MAC) address of the
// final destination of the route.
RemoteLinkAddress tcpip.LinkAddress
// LocalAddress is the local address where the route starts.
LocalAddress tcpip.Address
// LocalLinkAddress is the link-layer (MAC) address of the
// where the route starts.
LocalLinkAddress tcpip.LinkAddress
// NextHop is the next node in the path to the destination.
NextHop tcpip.Address
// NetProto is the network-layer protocol.
NetProto tcpip.NetworkProtocolNumber
// ref a reference to the network endpoint through which the route
// starts.
ref *referencedNetworkEndpoint
// Loop controls where WritePacket should send packets.
Loop PacketLooping
}
// makeRoute initializes a new route. It takes ownership of the provided
// reference to a network endpoint.
func makeRoute(netProto tcpip.NetworkProtocolNumber, localAddr, remoteAddr tcpip.Address, localLinkAddr tcpip.LinkAddress, ref *referencedNetworkEndpoint, handleLocal, multicastLoop bool) Route {
loop := PacketOut
if handleLocal && localAddr != "" && remoteAddr == localAddr {
loop = PacketLoop
} else if multicastLoop && (header.IsV4MulticastAddress(remoteAddr) || header.IsV6MulticastAddress(remoteAddr)) {
loop |= PacketLoop
} else if remoteAddr == header.IPv4Broadcast {
loop |= PacketLoop
}
return Route{
NetProto: netProto,
LocalAddress: localAddr,
LocalLinkAddress: localLinkAddr,
RemoteAddress: remoteAddr,
ref: ref,
Loop: loop,
}
}
// NICID returns the id of the NIC from which this route originates.
func (r *Route) NICID() tcpip.NICID {
return r.ref.ep.NICID()
}
// MaxHeaderLength forwards the call to the network endpoint's implementation.
func (r *Route) MaxHeaderLength() uint16 {
return r.ref.ep.MaxHeaderLength()
}
// Stats returns a mutable copy of current stats.
func (r *Route) Stats() tcpip.Stats {
return r.ref.nic.stack.Stats()
}
// PseudoHeaderChecksum forwards the call to the network endpoint's
// implementation.
func (r *Route) PseudoHeaderChecksum(protocol tcpip.TransportProtocolNumber, totalLen uint16) uint16 {
return header.PseudoHeaderChecksum(protocol, r.LocalAddress, r.RemoteAddress, totalLen)
}
// Capabilities returns the link-layer capabilities of the route.
func (r *Route) Capabilities() LinkEndpointCapabilities {
return r.ref.ep.Capabilities()
}
// GSOMaxSize returns the maximum GSO packet size.
func (r *Route) GSOMaxSize() uint32 {
if gso, ok := r.ref.ep.(GSOEndpoint); ok {
return gso.GSOMaxSize()
}
return 0
}
// Resolve attempts to resolve the link address if necessary. Returns ErrWouldBlock in
// case address resolution requires blocking, e.g. wait for ARP reply. Waker is
// notified when address resolution is complete (success or not).
//
// If address resolution is required, ErrNoLinkAddress and a notification channel is
// returned for the top level caller to block. Channel is closed once address resolution
// is complete (success or not).
func (r *Route) Resolve(waker *sleep.Waker) (<-chan struct{}, *tcpip.Error) {
if !r.IsResolutionRequired() {
// Nothing to do if there is no cache (which does the resolution on cache miss) or
// link address is already known.
return nil, nil
}
nextAddr := r.NextHop
if nextAddr == "" {
// Local link address is already known.
if r.RemoteAddress == r.LocalAddress {
r.RemoteLinkAddress = r.LocalLinkAddress
return nil, nil
}
nextAddr = r.RemoteAddress
}
linkAddr, ch, err := r.ref.linkCache.GetLinkAddress(r.ref.nic.ID(), nextAddr, r.LocalAddress, r.NetProto, waker)
if err != nil {
return ch, err
}
r.RemoteLinkAddress = linkAddr
return nil, nil
}
// RemoveWaker removes a waker that has been added in Resolve().
func (r *Route) RemoveWaker(waker *sleep.Waker) {
nextAddr := r.NextHop
if nextAddr == "" {
nextAddr = r.RemoteAddress
}
r.ref.linkCache.RemoveWaker(r.ref.nic.ID(), nextAddr, waker)
}
// IsResolutionRequired returns true if Resolve() must be called to resolve
// the link address before the this route can be written to.
func (r *Route) IsResolutionRequired() bool {
return r.ref.isValidForOutgoing() && r.ref.linkCache != nil && r.RemoteLinkAddress == ""
}
// WritePacket writes the packet through the given route.
func (r *Route) WritePacket(gso *GSO, params NetworkHeaderParams, pkt tcpip.PacketBuffer) *tcpip.Error {
if !r.ref.isValidForOutgoing() {
return tcpip.ErrInvalidEndpointState
}
err := r.ref.ep.WritePacket(r, gso, params, pkt)
if err != nil {
r.Stats().IP.OutgoingPacketErrors.Increment()
} else {
r.ref.nic.stats.Tx.Packets.Increment()
r.ref.nic.stats.Tx.Bytes.IncrementBy(uint64(pkt.Header.UsedLength() + pkt.Data.Size()))
}
return err
}
// WritePackets writes the set of packets through the given route.
func (r *Route) WritePackets(gso *GSO, pkts []tcpip.PacketBuffer, params NetworkHeaderParams) (int, *tcpip.Error) {
if !r.ref.isValidForOutgoing() {
return 0, tcpip.ErrInvalidEndpointState
}
n, err := r.ref.ep.WritePackets(r, gso, pkts, params)
if err != nil {
r.Stats().IP.OutgoingPacketErrors.IncrementBy(uint64(len(pkts) - n))
}
r.ref.nic.stats.Tx.Packets.IncrementBy(uint64(n))
payloadSize := 0
for i := 0; i < n; i++ {
r.ref.nic.stats.Tx.Bytes.IncrementBy(uint64(pkts[i].Header.UsedLength()))
payloadSize += pkts[i].DataSize
}
r.ref.nic.stats.Tx.Bytes.IncrementBy(uint64(payloadSize))
return n, err
}
// WriteHeaderIncludedPacket writes a packet already containing a network
// header through the given route.
func (r *Route) WriteHeaderIncludedPacket(pkt tcpip.PacketBuffer) *tcpip.Error {
if !r.ref.isValidForOutgoing() {
return tcpip.ErrInvalidEndpointState
}
if err := r.ref.ep.WriteHeaderIncludedPacket(r, pkt); err != nil {
r.Stats().IP.OutgoingPacketErrors.Increment()
return err
}
r.ref.nic.stats.Tx.Packets.Increment()
r.ref.nic.stats.Tx.Bytes.IncrementBy(uint64(pkt.Data.Size()))
return nil
}
// DefaultTTL returns the default TTL of the underlying network endpoint.
func (r *Route) DefaultTTL() uint8 {
return r.ref.ep.DefaultTTL()
}
// MTU returns the MTU of the underlying network endpoint.
func (r *Route) MTU() uint32 {
return r.ref.ep.MTU()
}
// Release frees all resources associated with the route.
func (r *Route) Release() {
if r.ref != nil {
r.ref.decRef()
r.ref = nil
}
}
// Clone Clone a route such that the original one can be released and the new
// one will remain valid.
func (r *Route) Clone() Route {
r.ref.incRef()
return *r
}
// MakeLoopedRoute duplicates the given route with special handling for routes
// used for sending multicast or broadcast packets. In those cases the
// multicast/broadcast address is the remote address when sending out, but for
// incoming (looped) packets it becomes the local address. Similarly, the local
// interface address that was the local address going out becomes the remote
// address coming in. This is different to unicast routes where local and
// remote addresses remain the same as they identify location (local vs remote)
// not direction (source vs destination).
func (r *Route) MakeLoopedRoute() Route {
l := r.Clone()
if r.RemoteAddress == header.IPv4Broadcast || header.IsV4MulticastAddress(r.RemoteAddress) || header.IsV6MulticastAddress(r.RemoteAddress) {
l.RemoteAddress, l.LocalAddress = l.LocalAddress, l.RemoteAddress
l.RemoteLinkAddress = l.LocalLinkAddress
}
return l
}
// Stack returns the instance of the Stack that owns this route.
func (r *Route) Stack() *Stack {
return r.ref.stack()
}
|