1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
|
// Copyright 2016 The Netstack Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package stack
import (
"strings"
"sync"
"sync/atomic"
"gvisor.googlesource.com/gvisor/pkg/ilist"
"gvisor.googlesource.com/gvisor/pkg/tcpip"
"gvisor.googlesource.com/gvisor/pkg/tcpip/buffer"
)
// NIC represents a "network interface card" to which the networking stack is
// attached.
type NIC struct {
stack *Stack
id tcpip.NICID
name string
linkEP LinkEndpoint
demux *transportDemuxer
mu sync.RWMutex
spoofing bool
promiscuous bool
primary map[tcpip.NetworkProtocolNumber]*ilist.List
endpoints map[NetworkEndpointID]*referencedNetworkEndpoint
subnets []tcpip.Subnet
}
func newNIC(stack *Stack, id tcpip.NICID, name string, ep LinkEndpoint) *NIC {
return &NIC{
stack: stack,
id: id,
name: name,
linkEP: ep,
demux: newTransportDemuxer(stack),
primary: make(map[tcpip.NetworkProtocolNumber]*ilist.List),
endpoints: make(map[NetworkEndpointID]*referencedNetworkEndpoint),
}
}
// attachLinkEndpoint attaches the NIC to the endpoint, which will enable it
// to start delivering packets.
func (n *NIC) attachLinkEndpoint() {
n.linkEP.Attach(n)
}
// setPromiscuousMode enables or disables promiscuous mode.
func (n *NIC) setPromiscuousMode(enable bool) {
n.mu.Lock()
n.promiscuous = enable
n.mu.Unlock()
}
// setSpoofing enables or disables address spoofing.
func (n *NIC) setSpoofing(enable bool) {
n.mu.Lock()
n.spoofing = enable
n.mu.Unlock()
}
// primaryEndpoint returns the primary endpoint of n for the given network
// protocol.
func (n *NIC) primaryEndpoint(protocol tcpip.NetworkProtocolNumber) *referencedNetworkEndpoint {
n.mu.RLock()
defer n.mu.RUnlock()
list := n.primary[protocol]
if list == nil {
return nil
}
for e := list.Front(); e != nil; e = e.Next() {
r := e.(*referencedNetworkEndpoint)
if r.tryIncRef() {
return r
}
}
return nil
}
// findEndpoint finds the endpoint, if any, with the given address.
func (n *NIC) findEndpoint(protocol tcpip.NetworkProtocolNumber, address tcpip.Address) *referencedNetworkEndpoint {
id := NetworkEndpointID{address}
n.mu.RLock()
ref := n.endpoints[id]
if ref != nil && !ref.tryIncRef() {
ref = nil
}
spoofing := n.spoofing
n.mu.RUnlock()
if ref != nil || !spoofing {
return ref
}
// Try again with the lock in exclusive mode. If we still can't get the
// endpoint, create a new "temporary" endpoint. It will only exist while
// there's a route through it.
n.mu.Lock()
ref = n.endpoints[id]
if ref == nil || !ref.tryIncRef() {
ref, _ = n.addAddressLocked(protocol, address, true)
if ref != nil {
ref.holdsInsertRef = false
}
}
n.mu.Unlock()
return ref
}
func (n *NIC) addAddressLocked(protocol tcpip.NetworkProtocolNumber, addr tcpip.Address, replace bool) (*referencedNetworkEndpoint, *tcpip.Error) {
netProto, ok := n.stack.networkProtocols[protocol]
if !ok {
return nil, tcpip.ErrUnknownProtocol
}
// Create the new network endpoint.
ep, err := netProto.NewEndpoint(n.id, addr, n.stack, n, n.linkEP)
if err != nil {
return nil, err
}
id := *ep.ID()
if ref, ok := n.endpoints[id]; ok {
if !replace {
return nil, tcpip.ErrDuplicateAddress
}
n.removeEndpointLocked(ref)
}
ref := &referencedNetworkEndpoint{
refs: 1,
ep: ep,
nic: n,
protocol: protocol,
holdsInsertRef: true,
}
// Set up cache if link address resolution exists for this protocol.
if n.linkEP.Capabilities()&CapabilityResolutionRequired != 0 {
if linkRes := n.stack.linkAddrResolvers[protocol]; linkRes != nil {
ref.linkCache = n.stack
}
}
n.endpoints[id] = ref
l, ok := n.primary[protocol]
if !ok {
l = &ilist.List{}
n.primary[protocol] = l
}
l.PushBack(ref)
return ref, nil
}
// AddAddress adds a new address to n, so that it starts accepting packets
// targeted at the given address (and network protocol).
func (n *NIC) AddAddress(protocol tcpip.NetworkProtocolNumber, addr tcpip.Address) *tcpip.Error {
// Add the endpoint.
n.mu.Lock()
_, err := n.addAddressLocked(protocol, addr, false)
n.mu.Unlock()
return err
}
// Addresses returns the addresses associated with this NIC.
func (n *NIC) Addresses() []tcpip.ProtocolAddress {
n.mu.RLock()
defer n.mu.RUnlock()
addrs := make([]tcpip.ProtocolAddress, 0, len(n.endpoints))
for nid, ep := range n.endpoints {
addrs = append(addrs, tcpip.ProtocolAddress{
Protocol: ep.protocol,
Address: nid.LocalAddress,
})
}
return addrs
}
// AddSubnet adds a new subnet to n, so that it starts accepting packets
// targeted at the given address and network protocol.
func (n *NIC) AddSubnet(protocol tcpip.NetworkProtocolNumber, subnet tcpip.Subnet) {
n.mu.Lock()
n.subnets = append(n.subnets, subnet)
n.mu.Unlock()
}
// Subnets returns the Subnets associated with this NIC.
func (n *NIC) Subnets() []tcpip.Subnet {
n.mu.RLock()
defer n.mu.RUnlock()
sns := make([]tcpip.Subnet, 0, len(n.subnets)+len(n.endpoints))
for nid := range n.endpoints {
sn, err := tcpip.NewSubnet(nid.LocalAddress, tcpip.AddressMask(strings.Repeat("\xff", len(nid.LocalAddress))))
if err != nil {
// This should never happen as the mask has been carefully crafted to
// match the address.
panic("Invalid endpoint subnet: " + err.Error())
}
sns = append(sns, sn)
}
return append(sns, n.subnets...)
}
func (n *NIC) removeEndpointLocked(r *referencedNetworkEndpoint) {
id := *r.ep.ID()
// Nothing to do if the reference has already been replaced with a
// different one.
if n.endpoints[id] != r {
return
}
if r.holdsInsertRef {
panic("Reference count dropped to zero before being removed")
}
delete(n.endpoints, id)
n.primary[r.protocol].Remove(r)
r.ep.Close()
}
func (n *NIC) removeEndpoint(r *referencedNetworkEndpoint) {
n.mu.Lock()
n.removeEndpointLocked(r)
n.mu.Unlock()
}
// RemoveAddress removes an address from n.
func (n *NIC) RemoveAddress(addr tcpip.Address) *tcpip.Error {
n.mu.Lock()
r := n.endpoints[NetworkEndpointID{addr}]
if r == nil || !r.holdsInsertRef {
n.mu.Unlock()
return tcpip.ErrBadLocalAddress
}
r.holdsInsertRef = false
n.mu.Unlock()
r.decRef()
return nil
}
// DeliverNetworkPacket finds the appropriate network protocol endpoint and
// hands the packet over for further processing. This function is called when
// the NIC receives a packet from the physical interface.
// Note that the ownership of the slice backing vv is retained by the caller.
// This rule applies only to the slice itself, not to the items of the slice;
// the ownership of the items is not retained by the caller.
func (n *NIC) DeliverNetworkPacket(linkEP LinkEndpoint, remoteLinkAddr tcpip.LinkAddress, protocol tcpip.NetworkProtocolNumber, vv *buffer.VectorisedView) {
netProto, ok := n.stack.networkProtocols[protocol]
if !ok {
atomic.AddUint64(&n.stack.stats.UnknownProtocolRcvdPackets, 1)
return
}
if len(vv.First()) < netProto.MinimumPacketSize() {
atomic.AddUint64(&n.stack.stats.MalformedRcvdPackets, 1)
return
}
src, dst := netProto.ParseAddresses(vv.First())
id := NetworkEndpointID{dst}
n.mu.RLock()
ref := n.endpoints[id]
if ref != nil && !ref.tryIncRef() {
ref = nil
}
promiscuous := n.promiscuous
subnets := n.subnets
n.mu.RUnlock()
if ref == nil {
// Check if the packet is for a subnet this NIC cares about.
if !promiscuous {
for _, sn := range subnets {
if sn.Contains(dst) {
promiscuous = true
break
}
}
}
if promiscuous {
// Try again with the lock in exclusive mode. If we still can't
// get the endpoint, create a new "temporary" one. It will only
// exist while there's a route through it.
n.mu.Lock()
ref = n.endpoints[id]
if ref == nil || !ref.tryIncRef() {
ref, _ = n.addAddressLocked(protocol, dst, true)
if ref != nil {
ref.holdsInsertRef = false
}
}
n.mu.Unlock()
}
}
if ref == nil {
atomic.AddUint64(&n.stack.stats.UnknownNetworkEndpointRcvdPackets, 1)
return
}
r := makeRoute(protocol, dst, src, linkEP.LinkAddress(), ref)
r.RemoteLinkAddress = remoteLinkAddr
ref.ep.HandlePacket(&r, vv)
ref.decRef()
}
// DeliverTransportPacket delivers the packets to the appropriate transport
// protocol endpoint.
func (n *NIC) DeliverTransportPacket(r *Route, protocol tcpip.TransportProtocolNumber, vv *buffer.VectorisedView) {
state, ok := n.stack.transportProtocols[protocol]
if !ok {
atomic.AddUint64(&n.stack.stats.UnknownProtocolRcvdPackets, 1)
return
}
transProto := state.proto
if len(vv.First()) < transProto.MinimumPacketSize() {
atomic.AddUint64(&n.stack.stats.MalformedRcvdPackets, 1)
return
}
srcPort, dstPort, err := transProto.ParsePorts(vv.First())
if err != nil {
atomic.AddUint64(&n.stack.stats.MalformedRcvdPackets, 1)
return
}
id := TransportEndpointID{dstPort, r.LocalAddress, srcPort, r.RemoteAddress}
if n.demux.deliverPacket(r, protocol, vv, id) {
return
}
if n.stack.demux.deliverPacket(r, protocol, vv, id) {
return
}
// Try to deliver to per-stack default handler.
if state.defaultHandler != nil {
if state.defaultHandler(r, id, vv) {
return
}
}
// We could not find an appropriate destination for this packet, so
// deliver it to the global handler.
if !transProto.HandleUnknownDestinationPacket(r, id, vv) {
atomic.AddUint64(&n.stack.stats.MalformedRcvdPackets, 1)
}
}
// DeliverTransportControlPacket delivers control packets to the appropriate
// transport protocol endpoint.
func (n *NIC) DeliverTransportControlPacket(local, remote tcpip.Address, net tcpip.NetworkProtocolNumber, trans tcpip.TransportProtocolNumber, typ ControlType, extra uint32, vv *buffer.VectorisedView) {
state, ok := n.stack.transportProtocols[trans]
if !ok {
return
}
transProto := state.proto
// ICMPv4 only guarantees that 8 bytes of the transport protocol will
// be present in the payload. We know that the ports are within the
// first 8 bytes for all known transport protocols.
if len(vv.First()) < 8 {
return
}
srcPort, dstPort, err := transProto.ParsePorts(vv.First())
if err != nil {
return
}
id := TransportEndpointID{srcPort, local, dstPort, remote}
if n.demux.deliverControlPacket(net, trans, typ, extra, vv, id) {
return
}
if n.stack.demux.deliverControlPacket(net, trans, typ, extra, vv, id) {
return
}
}
// ID returns the identifier of n.
func (n *NIC) ID() tcpip.NICID {
return n.id
}
type referencedNetworkEndpoint struct {
ilist.Entry
refs int32
ep NetworkEndpoint
nic *NIC
protocol tcpip.NetworkProtocolNumber
// linkCache is set if link address resolution is enabled for this
// protocol. Set to nil otherwise.
linkCache LinkAddressCache
// holdsInsertRef is protected by the NIC's mutex. It indicates whether
// the reference count is biased by 1 due to the insertion of the
// endpoint. It is reset to false when RemoveAddress is called on the
// NIC.
holdsInsertRef bool
}
// decRef decrements the ref count and cleans up the endpoint once it reaches
// zero.
func (r *referencedNetworkEndpoint) decRef() {
if atomic.AddInt32(&r.refs, -1) == 0 {
r.nic.removeEndpoint(r)
}
}
// incRef increments the ref count. It must only be called when the caller is
// known to be holding a reference to the endpoint, otherwise tryIncRef should
// be used.
func (r *referencedNetworkEndpoint) incRef() {
atomic.AddInt32(&r.refs, 1)
}
// tryIncRef attempts to increment the ref count from n to n+1, but only if n is
// not zero. That is, it will increment the count if the endpoint is still
// alive, and do nothing if it has already been clean up.
func (r *referencedNetworkEndpoint) tryIncRef() bool {
for {
v := atomic.LoadInt32(&r.refs)
if v == 0 {
return false
}
if atomic.CompareAndSwapInt32(&r.refs, v, v+1) {
return true
}
}
}
|