1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
|
// Copyright 2019 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package vfs implements a virtual filesystem layer.
//
// Lock order:
//
// Filesystem implementation locks
// VirtualFilesystem.mountMu
// VirtualFilesystem.fsTypesMu
package vfs
import (
"sync"
)
// A VirtualFilesystem (VFS for short) combines Filesystems in trees of Mounts.
//
// There is no analogue to the VirtualFilesystem type in Linux, as the
// equivalent state in Linux is global.
type VirtualFilesystem struct {
// mountMu serializes mount mutations.
//
// mountMu is analogous to Linux's namespace_sem.
mountMu sync.RWMutex
// mounts maps (mount parent, mount point) pairs to mounts. (Since mounts
// are uniquely namespaced, including mount parent in the key correctly
// handles both bind mounts and mount namespaces; Linux does the same.)
// Synchronization between mutators and readers is provided by mounts.seq;
// synchronization between mutators is provided by mountMu.
//
// mounts is used to follow mount points during path traversal. We use a
// single table rather than per-Dentry tables to reduce size (and therefore
// cache footprint) for the vast majority of Dentries that are not mount
// points.
//
// mounts is analogous to Linux's mount_hashtable.
mounts mountTable
// mountpoints maps mount points to mounts at those points in all
// namespaces. mountpoints is protected by mountMu.
//
// mountpoints is used to find mounts that must be unmounted due to
// removal of a mount point Dentry from another mount namespace. ("A file
// or directory that is a mount point in one namespace that is not a mount
// point in another namespace, may be renamed, unlinked, or removed
// (rmdir(2)) in the mount namespace in which it is not a mount point
// (subject to the usual permission checks)." - mount_namespaces(7))
//
// mountpoints is analogous to Linux's mountpoint_hashtable.
mountpoints map[*Dentry]map[*Mount]struct{}
// fsTypes contains all FilesystemTypes that are usable in the
// VirtualFilesystem. fsTypes is protected by fsTypesMu.
fsTypesMu sync.RWMutex
fsTypes map[string]FilesystemType
}
// New returns a new VirtualFilesystem with no mounts or FilesystemTypes.
func New() *VirtualFilesystem {
vfs := &VirtualFilesystem{
mountpoints: make(map[*Dentry]map[*Mount]struct{}),
fsTypes: make(map[string]FilesystemType),
}
vfs.mounts.Init()
return vfs
}
// A VirtualDentry represents a node in a VFS tree, by combining a Dentry
// (which represents a node in a Filesystem's tree) and a Mount (which
// represents the Filesystem's position in a VFS mount tree).
//
// VirtualDentry's semantics are similar to that of a Go interface object
// representing a pointer: it is a copyable value type that represents
// references to another entity. The zero value of VirtualDentry is an "empty
// VirtualDentry", directly analogous to a nil interface object.
// VirtualDentry.Ok() checks that a VirtualDentry is not zero-valued; unless
// otherwise specified, all other VirtualDentry methods require
// VirtualDentry.Ok() == true.
//
// Mounts and Dentries are reference-counted, requiring that users call
// VirtualDentry.{Inc,Dec}Ref() as appropriate. We often colloquially refer to
// references on the Mount and Dentry referred to by a VirtualDentry as
// references on the VirtualDentry itself. Unless otherwise specified, all
// VirtualDentry methods require that a reference is held on the VirtualDentry.
//
// VirtualDentry is analogous to Linux's struct path.
type VirtualDentry struct {
mount *Mount
dentry *Dentry
}
// Ok returns true if vd is not empty. It does not require that a reference is
// held.
func (vd VirtualDentry) Ok() bool {
return vd.mount != nil
}
// IncRef increments the reference counts on the Mount and Dentry represented
// by vd.
func (vd VirtualDentry) IncRef() {
vd.mount.incRef()
vd.dentry.incRef(vd.mount.fs)
}
// DecRef decrements the reference counts on the Mount and Dentry represented
// by vd.
func (vd VirtualDentry) DecRef() {
vd.dentry.decRef(vd.mount.fs)
vd.mount.decRef()
}
// Mount returns the Mount associated with vd. It does not take a reference on
// the returned Mount.
func (vd VirtualDentry) Mount() *Mount {
return vd.mount
}
// Dentry returns the Dentry associated with vd. It does not take a reference
// on the returned Dentry.
func (vd VirtualDentry) Dentry() *Dentry {
return vd.dentry
}
|