summaryrefslogtreecommitdiffhomepage
path: root/pkg/sentry/time/calibrated_clock_test.go
blob: 8b6dd55920c0b9e3fa931c8aa92ebf775126c54d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
// Copyright 2018 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

package time

import (
	"testing"
	"time"
)

// newTestCalibratedClock returns a CalibratedClock that collects samples from
// the given sample list and cycle counts from the given cycle list.
func newTestCalibratedClock(samples []sample, cycles []TSCValue) *CalibratedClock {
	return &CalibratedClock{
		ref: newTestSampler(samples, cycles),
	}
}

func TestConstantFrequency(t *testing.T) {
	// Perfectly constant frequency.
	samples := []sample{
		{before: 100000, after: 100000 + defaultOverheadCycles, ref: 100},
		{before: 200000, after: 200000 + defaultOverheadCycles, ref: 200},
		{before: 300000, after: 300000 + defaultOverheadCycles, ref: 300},
		{before: 400000, after: 400000 + defaultOverheadCycles, ref: 400},
		{before: 500000, after: 500000 + defaultOverheadCycles, ref: 500},
		{before: 600000, after: 600000 + defaultOverheadCycles, ref: 600},
		{before: 700000, after: 700000 + defaultOverheadCycles, ref: 700},
	}

	c := newTestCalibratedClock(samples, nil)

	// Update from all samples.
	for range samples {
		c.Update()
	}

	c.mu.RLock()
	if !c.ready {
		c.mu.RUnlock()
		t.Fatalf("clock not ready")
	}
	// A bit after the last sample.
	now, ok := c.params.ComputeTime(750000)
	c.mu.RUnlock()
	if !ok {
		t.Fatalf("ComputeTime ok got %v want true", ok)
	}

	t.Logf("now: %v", now)

	// Time should be between the current sample and where we'd expect the
	// next sample.
	if now < 700 || now > 800 {
		t.Errorf("now got %v want > 700 && < 800", now)
	}
}

func TestErrorCorrection(t *testing.T) {
	testCases := []struct {
		name               string
		samples            [5]sample
		projectedTimeStart int64
		projectedTimeEnd   int64
	}{
		// Initial calibration should be ~1MHz for each of these, and
		// the reference clock changes in samples[2].
		{
			name: "slow-down",
			samples: [5]sample{
				{before: 1000000, after: 1000001, ref: ReferenceNS(1 * ApproxUpdateInterval.Nanoseconds())},
				{before: 2000000, after: 2000001, ref: ReferenceNS(2 * ApproxUpdateInterval.Nanoseconds())},
				// Reference clock has slowed down, causing 100ms of error.
				{before: 3010000, after: 3010001, ref: ReferenceNS(3 * ApproxUpdateInterval.Nanoseconds())},
				{before: 4020000, after: 4020001, ref: ReferenceNS(4 * ApproxUpdateInterval.Nanoseconds())},
				{before: 5030000, after: 5030001, ref: ReferenceNS(5 * ApproxUpdateInterval.Nanoseconds())},
			},
			projectedTimeStart: 3005 * time.Millisecond.Nanoseconds(),
			projectedTimeEnd:   3015 * time.Millisecond.Nanoseconds(),
		},
		{
			name: "speed-up",
			samples: [5]sample{
				{before: 1000000, after: 1000001, ref: ReferenceNS(1 * ApproxUpdateInterval.Nanoseconds())},
				{before: 2000000, after: 2000001, ref: ReferenceNS(2 * ApproxUpdateInterval.Nanoseconds())},
				// Reference clock has sped up, causing 100ms of error.
				{before: 2990000, after: 2990001, ref: ReferenceNS(3 * ApproxUpdateInterval.Nanoseconds())},
				{before: 3980000, after: 3980001, ref: ReferenceNS(4 * ApproxUpdateInterval.Nanoseconds())},
				{before: 4970000, after: 4970001, ref: ReferenceNS(5 * ApproxUpdateInterval.Nanoseconds())},
			},
			projectedTimeStart: 2985 * time.Millisecond.Nanoseconds(),
			projectedTimeEnd:   2995 * time.Millisecond.Nanoseconds(),
		},
	}
	for _, tc := range testCases {
		t.Run(tc.name, func(t *testing.T) {
			c := newTestCalibratedClock(tc.samples[:], nil)

			// Initial calibration takes two updates.
			_, ok := c.Update()
			if ok {
				t.Fatalf("Update ready too early")
			}

			params, ok := c.Update()
			if !ok {
				t.Fatalf("Update not ready")
			}

			// Initial calibration is ~1MHz.
			hz := params.Frequency
			if hz < 990000 || hz > 1010000 {
				t.Fatalf("Frequency got %v want > 990kHz && < 1010kHz", hz)
			}

			// Project time at the next update. Given the 1MHz
			// calibration, it is expected to be ~3.1s/2.9s, not
			// the actual 3s.
			//
			// N.B. the next update time is the "after" time above.
			projected, ok := params.ComputeTime(tc.samples[2].after)
			if !ok {
				t.Fatalf("ComputeTime ok got %v want true", ok)
			}
			if projected < tc.projectedTimeStart || projected > tc.projectedTimeEnd {
				t.Fatalf("ComputeTime(%v) got %v want > %v && < %v", tc.samples[2].after, projected, tc.projectedTimeStart, tc.projectedTimeEnd)
			}

			// Update again to see the changed reference clock.
			params, ok = c.Update()
			if !ok {
				t.Fatalf("Update not ready")
			}

			// We now know that TSC = tc.samples[2].after -> 3s,
			// but with the previous params indicated that TSC
			// tc.samples[2].after -> 3.5s/2.5s. We can't allow the
			// clock to go backwards, and having the clock jump
			// forwards is undesirable. There should be a smooth
			// transition that corrects the clock error over time.
			// Check that the clock is continuous at TSC =
			// tc.samples[2].after.
			newProjected, ok := params.ComputeTime(tc.samples[2].after)
			if !ok {
				t.Fatalf("ComputeTime ok got %v want true", ok)
			}
			if newProjected != projected {
				t.Errorf("Discontinuous time; ComputeTime(%v) got %v want %v", tc.samples[2].after, newProjected, projected)
			}

			// As the reference clock stablizes, ensure that the clock error
			// decreases.
			initialErr := c.errorNS
			t.Logf("initial error: %v ns", initialErr)

			_, ok = c.Update()
			if !ok {
				t.Fatalf("Update not ready")
			}
			if c.errorNS.Magnitude() > initialErr.Magnitude() {
				t.Errorf("errorNS increased, got %v want |%v| <= |%v|", c.errorNS, c.errorNS, initialErr)
			}

			_, ok = c.Update()
			if !ok {
				t.Fatalf("Update not ready")
			}
			if c.errorNS.Magnitude() > initialErr.Magnitude() {
				t.Errorf("errorNS increased, got %v want |%v| <= |%v|", c.errorNS, c.errorNS, initialErr)
			}

			t.Logf("final error: %v ns", c.errorNS)
		})
	}
}