1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package time provides a calibrated clock synchronized to a system reference
// clock.
package time
import (
"sync"
"time"
"gvisor.dev/gvisor/pkg/log"
"gvisor.dev/gvisor/pkg/metric"
"gvisor.dev/gvisor/pkg/syserror"
)
// fallbackMetric tracks failed updates. It is not sync, as it is not critical
// that all occurrences are captured and CalibratedClock may fallback many
// times.
var fallbackMetric = metric.MustCreateNewUint64Metric("/time/fallback", false /* sync */, "Incremented when a clock falls back to system calls due to a failed update")
// CalibratedClock implements a clock that tracks a reference clock.
//
// Users should call Update at regular intervals of around approxUpdateInterval
// to ensure that the clock does not drift significantly from the reference
// clock.
type CalibratedClock struct {
// mu protects the fields below.
// TODO(mpratt): consider a sequence counter for read locking.
mu sync.RWMutex
// ref sample the reference clock that this clock is calibrated
// against.
ref *sampler
// ready indicates that the fields below are ready for use calculating
// time.
ready bool
// params are the current timekeeping parameters.
params Parameters
// errorNS is the estimated clock error in nanoseconds.
errorNS ReferenceNS
}
// NewCalibratedClock creates a CalibratedClock that tracks the given ClockID.
func NewCalibratedClock(c ClockID) *CalibratedClock {
return &CalibratedClock{
ref: newSampler(c),
}
}
// Debugf logs at debug level.
func (c *CalibratedClock) Debugf(format string, v ...interface{}) {
if log.IsLogging(log.Debug) {
args := []interface{}{c.ref.clockID}
args = append(args, v...)
log.Debugf("CalibratedClock(%v): "+format, args...)
}
}
// Infof logs at debug level.
func (c *CalibratedClock) Infof(format string, v ...interface{}) {
if log.IsLogging(log.Info) {
args := []interface{}{c.ref.clockID}
args = append(args, v...)
log.Infof("CalibratedClock(%v): "+format, args...)
}
}
// Warningf logs at debug level.
func (c *CalibratedClock) Warningf(format string, v ...interface{}) {
if log.IsLogging(log.Warning) {
args := []interface{}{c.ref.clockID}
args = append(args, v...)
log.Warningf("CalibratedClock(%v): "+format, args...)
}
}
// reset forces the clock to restart the calibration process, logging the
// passed message.
func (c *CalibratedClock) reset(str string, v ...interface{}) {
c.mu.Lock()
defer c.mu.Unlock()
c.resetLocked(str, v...)
}
// resetLocked is equivalent to reset with c.mu already held for writing.
func (c *CalibratedClock) resetLocked(str string, v ...interface{}) {
c.Warningf(str+" Resetting clock; time may jump.", v...)
c.ready = false
c.ref.Reset()
fallbackMetric.Increment()
}
// updateParams updates the timekeeping parameters based on the passed
// parameters.
//
// actual is the actual estimated timekeeping parameters. The stored parameters
// may need to be adjusted slightly from these values to compensate for error.
//
// Preconditions: c.mu must be held for writing.
func (c *CalibratedClock) updateParams(actual Parameters) {
if !c.ready {
// At initial calibration there is nothing to correct.
c.params = actual
c.ready = true
c.Infof("ready")
return
}
// Otherwise, adjust the params to correct for errors.
newParams, errorNS, err := errorAdjust(c.params, actual, actual.BaseCycles)
if err != nil {
// Something is very wrong. Reset and try again from the
// beginning.
c.resetLocked("Unable to update params: %v.", err)
return
}
logErrorAdjustment(c.ref.clockID, errorNS, c.params, newParams)
if errorNS.Magnitude() >= MaxClockError {
// We should never get such extreme error, something is very
// wrong. Reset everything and start again.
//
// N.B. logErrorAdjustment will have already logged the error
// at warning level.
//
// TODO(mpratt): We could allow Realtime clock jumps here.
c.resetLocked("Extreme clock error.")
return
}
c.params = newParams
c.errorNS = errorNS
}
// Update runs the update step of the clock, updating its synchronization with
// the reference clock.
//
// Update returns timekeeping and true with the new timekeeping parameters if
// the clock is calibrated. Update should be called regularly to prevent the
// clock from getting significantly out of sync from the reference clock.
//
// The returned timekeeping parameters are invalidated on the next call to
// Update.
func (c *CalibratedClock) Update() (Parameters, bool) {
c.mu.Lock()
defer c.mu.Unlock()
if err := c.ref.Sample(); err != nil {
c.resetLocked("Unable to update calibrated clock: %v.", err)
return Parameters{}, false
}
oldest, newest, ok := c.ref.Range()
if !ok {
// Not ready yet.
return Parameters{}, false
}
minCount := uint64(newest.before - oldest.after)
maxCount := uint64(newest.after - oldest.before)
refInterval := uint64(newest.ref - oldest.ref)
// freq hz = count / (interval ns) * (nsPerS ns) / (1 s)
nsPerS := uint64(time.Second.Nanoseconds())
minHz, ok := muldiv64(minCount, nsPerS, refInterval)
if !ok {
c.resetLocked("Unable to update calibrated clock: (%v - %v) * %v / %v overflows.", newest.before, oldest.after, nsPerS, refInterval)
return Parameters{}, false
}
maxHz, ok := muldiv64(maxCount, nsPerS, refInterval)
if !ok {
c.resetLocked("Unable to update calibrated clock: (%v - %v) * %v / %v overflows.", newest.after, oldest.before, nsPerS, refInterval)
return Parameters{}, false
}
c.updateParams(Parameters{
Frequency: (minHz + maxHz) / 2,
BaseRef: newest.ref,
BaseCycles: newest.after,
})
return c.params, true
}
// GetTime returns the current time based on the clock calibration.
func (c *CalibratedClock) GetTime() (int64, error) {
c.mu.RLock()
if !c.ready {
// Fallback to a syscall.
now, err := c.ref.Syscall()
c.mu.RUnlock()
return int64(now), err
}
now := c.ref.Cycles()
v, ok := c.params.ComputeTime(now)
if !ok {
// Something is seriously wrong with the clock. Try
// again with syscalls.
c.resetLocked("Time computation overflowed. params = %+v, now = %v.", c.params, now)
now, err := c.ref.Syscall()
c.mu.RUnlock()
return int64(now), err
}
c.mu.RUnlock()
return v, nil
}
// CalibratedClocks contains calibrated monotonic and realtime clocks.
//
// TODO(mpratt): We know that Linux runs the monotonic and realtime clocks at
// the same rate, so rather than tracking both individually, we could do one
// calibration for both clocks.
type CalibratedClocks struct {
// monotonic is the clock tracking the system monotonic clock.
monotonic *CalibratedClock
// realtime is the realtime equivalent of monotonic.
realtime *CalibratedClock
}
// NewCalibratedClocks creates a CalibratedClocks.
func NewCalibratedClocks() *CalibratedClocks {
return &CalibratedClocks{
monotonic: NewCalibratedClock(Monotonic),
realtime: NewCalibratedClock(Realtime),
}
}
// Update implements Clocks.Update.
func (c *CalibratedClocks) Update() (Parameters, bool, Parameters, bool) {
monotonicParams, monotonicOk := c.monotonic.Update()
realtimeParams, realtimeOk := c.realtime.Update()
return monotonicParams, monotonicOk, realtimeParams, realtimeOk
}
// GetTime implements Clocks.GetTime.
func (c *CalibratedClocks) GetTime(id ClockID) (int64, error) {
switch id {
case Monotonic:
return c.monotonic.GetTime()
case Realtime:
return c.realtime.GetTime()
default:
return 0, syserror.EINVAL
}
}
|