1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
|
package ring0
import (
"fmt"
"io"
"reflect"
"syscall"
"gvisor.dev/gvisor/pkg/sentry/platform/ring0/pagetables"
"gvisor.dev/gvisor/pkg/sentry/usermem"
)
// Useful bits.
const (
_PGD_PGT_BASE = 0x1000
_PGD_PGT_SIZE = 0x1000
_PUD_PGT_BASE = 0x2000
_PUD_PGT_SIZE = 0x1000
_PMD_PGT_BASE = 0x3000
_PMD_PGT_SIZE = 0x4000
_PTE_PGT_BASE = 0x7000
_PTE_PGT_SIZE = 0x1000
_PSR_MODE_EL0t = 0x0
_PSR_MODE_EL1t = 0x4
_PSR_MODE_EL1h = 0x5
_PSR_EL_MASK = 0xf
_PSR_D_BIT = 0x200
_PSR_A_BIT = 0x100
_PSR_I_BIT = 0x80
_PSR_F_BIT = 0x40
)
const (
// KernelFlagsSet should always be set in the kernel.
KernelFlagsSet = _PSR_MODE_EL1h
// UserFlagsSet are always set in userspace.
UserFlagsSet = _PSR_MODE_EL0t
KernelFlagsClear = _PSR_EL_MASK
UserFlagsClear = _PSR_EL_MASK
PsrDefaultSet = _PSR_D_BIT | _PSR_A_BIT | _PSR_I_BIT | _PSR_F_BIT
)
// Vector is an exception vector.
type Vector uintptr
// Exception vectors.
const (
El1SyncInvalid = iota
El1IrqInvalid
El1FiqInvalid
El1ErrorInvalid
El1Sync
El1Irq
El1Fiq
El1Error
El0Sync
El0Irq
El0Fiq
El0Error
El0Sync_invalid
El0Irq_invalid
El0Fiq_invalid
El0Error_invalid
El1Sync_da
El1Sync_ia
El1Sync_sp_pc
El1Sync_undef
El1Sync_dbg
El1Sync_inv
El0Sync_svc
El0Sync_da
El0Sync_ia
El0Sync_fpsimd_acc
El0Sync_sve_acc
El0Sync_sys
El0Sync_sp_pc
El0Sync_undef
El0Sync_dbg
El0Sync_inv
VirtualizationException
_NR_INTERRUPTS
)
// System call vectors.
const (
Syscall Vector = El0Sync_svc
PageFault Vector = El0Sync_da
)
// VirtualAddressBits returns the number bits available for virtual addresses.
func VirtualAddressBits() uint32 {
return 48
}
// PhysicalAddressBits returns the number of bits available for physical addresses.
func PhysicalAddressBits() uint32 {
return 40
}
// Kernel is a global kernel object.
//
// This contains global state, shared by multiple CPUs.
type Kernel struct {
KernelArchState
}
// Hooks are hooks for kernel functions.
type Hooks interface {
// KernelSyscall is called for kernel system calls.
//
// Return from this call will restore registers and return to the kernel: the
// registers must be modified directly.
//
// If this function is not provided, a kernel exception results in halt.
//
// This must be go:nosplit, as this will be on the interrupt stack.
// Closures are permitted, as the pointer to the closure frame is not
// passed on the stack.
KernelSyscall()
// KernelException handles an exception during kernel execution.
//
// Return from this call will restore registers and return to the kernel: the
// registers must be modified directly.
//
// If this function is not provided, a kernel exception results in halt.
//
// This must be go:nosplit, as this will be on the interrupt stack.
// Closures are permitted, as the pointer to the closure frame is not
// passed on the stack.
KernelException(Vector)
}
// CPU is the per-CPU struct.
type CPU struct {
// self is a self reference.
//
// This is always guaranteed to be at offset zero.
self *CPU
// kernel is reference to the kernel that this CPU was initialized
// with. This reference is kept for garbage collection purposes: CPU
// registers may refer to objects within the Kernel object that cannot
// be safely freed.
kernel *Kernel
// CPUArchState is architecture-specific state.
CPUArchState
// registers is a set of registers; these may be used on kernel system
// calls and exceptions via the Registers function.
registers syscall.PtraceRegs
// hooks are kernel hooks.
hooks Hooks
}
// Registers returns a modifiable-copy of the kernel registers.
//
// This is explicitly safe to call during KernelException and KernelSyscall.
//
//go:nosplit
func (c *CPU) Registers() *syscall.PtraceRegs {
return &c.registers
}
// SwitchOpts are passed to the Switch function.
type SwitchOpts struct {
// Registers are the user register state.
Registers *syscall.PtraceRegs
// FloatingPointState is a byte pointer where floating point state is
// saved and restored.
FloatingPointState *byte
// PageTables are the application page tables.
PageTables *pagetables.PageTables
// Flush indicates that a TLB flush should be forced on switch.
Flush bool
// FullRestore indicates that an iret-based restore should be used.
FullRestore bool
// SwitchArchOpts are architecture-specific options.
SwitchArchOpts
}
var (
// UserspaceSize is the total size of userspace.
UserspaceSize = uintptr(1) << (VirtualAddressBits())
// MaximumUserAddress is the largest possible user address.
MaximumUserAddress = (UserspaceSize - 1) & ^uintptr(usermem.PageSize-1)
// KernelStartAddress is the starting kernel address.
KernelStartAddress = ^uintptr(0) - (UserspaceSize - 1)
)
// KernelOpts has initialization options for the kernel.
type KernelOpts struct {
// PageTables are the kernel pagetables; this must be provided.
PageTables *pagetables.PageTables
}
// KernelArchState contains architecture-specific state.
type KernelArchState struct {
KernelOpts
}
// CPUArchState contains CPU-specific arch state.
type CPUArchState struct {
// stack is the stack used for interrupts on this CPU.
stack [512]byte
// errorCode is the error code from the last exception.
errorCode uintptr
// errorType indicates the type of error code here, it is always set
// along with the errorCode value above.
//
// It will either by 1, which indicates a user error, or 0 indicating a
// kernel error. If the error code below returns false (kernel error),
// then it cannot provide relevant information about the last
// exception.
errorType uintptr
// faultAddr is the value of far_el1.
faultAddr uintptr
// ttbr0Kvm is the value of ttbr0_el1 for sentry.
ttbr0Kvm uintptr
// ttbr0App is the value of ttbr0_el1 for applicaton.
ttbr0App uintptr
// exception vector.
vecCode Vector
// application context pointer.
appAddr uintptr
// lazyVFP is the value of cpacr_el1.
lazyVFP uintptr
}
// ErrorCode returns the last error code.
//
// The returned boolean indicates whether the error code corresponds to the
// last user error or not. If it does not, then fault information must be
// ignored. This is generally the result of a kernel fault while servicing a
// user fault.
//
//go:nosplit
func (c *CPU) ErrorCode() (value uintptr, user bool) {
return c.errorCode, c.errorType != 0
}
// ClearErrorCode resets the error code.
//
//go:nosplit
func (c *CPU) ClearErrorCode() {
c.errorCode = 0
c.errorType = 1
}
//go:nosplit
func (c *CPU) GetFaultAddr() (value uintptr) {
return c.faultAddr
}
//go:nosplit
func (c *CPU) SetTtbr0Kvm(value uintptr) {
c.ttbr0Kvm = value
}
//go:nosplit
func (c *CPU) SetTtbr0App(value uintptr) {
c.ttbr0App = value
}
//go:nosplit
func (c *CPU) GetVector() (value Vector) {
return c.vecCode
}
//go:nosplit
func (c *CPU) SetAppAddr(value uintptr) {
c.appAddr = value
}
// SwitchArchOpts are embedded in SwitchOpts.
type SwitchArchOpts struct {
// UserASID indicates that the application ASID to be used on switch,
UserASID uint16
// KernelASID indicates that the kernel ASID to be used on return,
KernelASID uint16
}
func init() {
}
// Emit prints architecture-specific offsets.
func Emit(w io.Writer) {
fmt.Fprintf(w, "// Automatically generated, do not edit.\n")
c := &CPU{}
fmt.Fprintf(w, "\n// CPU offsets.\n")
fmt.Fprintf(w, "#define CPU_SELF 0x%02x\n", reflect.ValueOf(&c.self).Pointer()-reflect.ValueOf(c).Pointer())
fmt.Fprintf(w, "#define CPU_REGISTERS 0x%02x\n", reflect.ValueOf(&c.registers).Pointer()-reflect.ValueOf(c).Pointer())
fmt.Fprintf(w, "#define CPU_STACK_TOP 0x%02x\n", reflect.ValueOf(&c.stack[0]).Pointer()-reflect.ValueOf(c).Pointer()+uintptr(len(c.stack)))
fmt.Fprintf(w, "#define CPU_ERROR_CODE 0x%02x\n", reflect.ValueOf(&c.errorCode).Pointer()-reflect.ValueOf(c).Pointer())
fmt.Fprintf(w, "#define CPU_ERROR_TYPE 0x%02x\n", reflect.ValueOf(&c.errorType).Pointer()-reflect.ValueOf(c).Pointer())
fmt.Fprintf(w, "#define CPU_FAULT_ADDR 0x%02x\n", reflect.ValueOf(&c.faultAddr).Pointer()-reflect.ValueOf(c).Pointer())
fmt.Fprintf(w, "#define CPU_TTBR0_KVM 0x%02x\n", reflect.ValueOf(&c.ttbr0Kvm).Pointer()-reflect.ValueOf(c).Pointer())
fmt.Fprintf(w, "#define CPU_TTBR0_APP 0x%02x\n", reflect.ValueOf(&c.ttbr0App).Pointer()-reflect.ValueOf(c).Pointer())
fmt.Fprintf(w, "#define CPU_VECTOR_CODE 0x%02x\n", reflect.ValueOf(&c.vecCode).Pointer()-reflect.ValueOf(c).Pointer())
fmt.Fprintf(w, "#define CPU_APP_ADDR 0x%02x\n", reflect.ValueOf(&c.appAddr).Pointer()-reflect.ValueOf(c).Pointer())
fmt.Fprintf(w, "#define CPU_LAZY_VFP 0x%02x\n", reflect.ValueOf(&c.lazyVFP).Pointer()-reflect.ValueOf(c).Pointer())
fmt.Fprintf(w, "\n// Bits.\n")
fmt.Fprintf(w, "#define _KERNEL_FLAGS 0x%02x\n", KernelFlagsSet)
fmt.Fprintf(w, "\n// Vectors.\n")
fmt.Fprintf(w, "#define El1SyncInvalid 0x%02x\n", El1SyncInvalid)
fmt.Fprintf(w, "#define El1IrqInvalid 0x%02x\n", El1IrqInvalid)
fmt.Fprintf(w, "#define El1FiqInvalid 0x%02x\n", El1FiqInvalid)
fmt.Fprintf(w, "#define El1ErrorInvalid 0x%02x\n", El1ErrorInvalid)
fmt.Fprintf(w, "#define El1Sync 0x%02x\n", El1Sync)
fmt.Fprintf(w, "#define El1Irq 0x%02x\n", El1Irq)
fmt.Fprintf(w, "#define El1Fiq 0x%02x\n", El1Fiq)
fmt.Fprintf(w, "#define El1Error 0x%02x\n", El1Error)
fmt.Fprintf(w, "#define El0Sync 0x%02x\n", El0Sync)
fmt.Fprintf(w, "#define El0Irq 0x%02x\n", El0Irq)
fmt.Fprintf(w, "#define El0Fiq 0x%02x\n", El0Fiq)
fmt.Fprintf(w, "#define El0Error 0x%02x\n", El0Error)
fmt.Fprintf(w, "#define El0Sync_invalid 0x%02x\n", El0Sync_invalid)
fmt.Fprintf(w, "#define El0Irq_invalid 0x%02x\n", El0Irq_invalid)
fmt.Fprintf(w, "#define El0Fiq_invalid 0x%02x\n", El0Fiq_invalid)
fmt.Fprintf(w, "#define El0Error_invalid 0x%02x\n", El0Error_invalid)
fmt.Fprintf(w, "#define El1Sync_da 0x%02x\n", El1Sync_da)
fmt.Fprintf(w, "#define El1Sync_ia 0x%02x\n", El1Sync_ia)
fmt.Fprintf(w, "#define El1Sync_sp_pc 0x%02x\n", El1Sync_sp_pc)
fmt.Fprintf(w, "#define El1Sync_undef 0x%02x\n", El1Sync_undef)
fmt.Fprintf(w, "#define El1Sync_dbg 0x%02x\n", El1Sync_dbg)
fmt.Fprintf(w, "#define El1Sync_inv 0x%02x\n", El1Sync_inv)
fmt.Fprintf(w, "#define El0Sync_svc 0x%02x\n", El0Sync_svc)
fmt.Fprintf(w, "#define El0Sync_da 0x%02x\n", El0Sync_da)
fmt.Fprintf(w, "#define El0Sync_ia 0x%02x\n", El0Sync_ia)
fmt.Fprintf(w, "#define El0Sync_fpsimd_acc 0x%02x\n", El0Sync_fpsimd_acc)
fmt.Fprintf(w, "#define El0Sync_sve_acc 0x%02x\n", El0Sync_sve_acc)
fmt.Fprintf(w, "#define El0Sync_sys 0x%02x\n", El0Sync_sys)
fmt.Fprintf(w, "#define El0Sync_sp_pc 0x%02x\n", El0Sync_sp_pc)
fmt.Fprintf(w, "#define El0Sync_undef 0x%02x\n", El0Sync_undef)
fmt.Fprintf(w, "#define El0Sync_dbg 0x%02x\n", El0Sync_dbg)
fmt.Fprintf(w, "#define El0Sync_inv 0x%02x\n", El0Sync_inv)
fmt.Fprintf(w, "#define PageFault 0x%02x\n", PageFault)
fmt.Fprintf(w, "#define Syscall 0x%02x\n", Syscall)
p := &syscall.PtraceRegs{}
fmt.Fprintf(w, "\n// Ptrace registers.\n")
fmt.Fprintf(w, "#define PTRACE_R0 0x%02x\n", reflect.ValueOf(&p.Regs[0]).Pointer()-reflect.ValueOf(p).Pointer())
fmt.Fprintf(w, "#define PTRACE_R1 0x%02x\n", reflect.ValueOf(&p.Regs[1]).Pointer()-reflect.ValueOf(p).Pointer())
fmt.Fprintf(w, "#define PTRACE_R2 0x%02x\n", reflect.ValueOf(&p.Regs[2]).Pointer()-reflect.ValueOf(p).Pointer())
fmt.Fprintf(w, "#define PTRACE_R3 0x%02x\n", reflect.ValueOf(&p.Regs[3]).Pointer()-reflect.ValueOf(p).Pointer())
fmt.Fprintf(w, "#define PTRACE_R4 0x%02x\n", reflect.ValueOf(&p.Regs[4]).Pointer()-reflect.ValueOf(p).Pointer())
fmt.Fprintf(w, "#define PTRACE_R5 0x%02x\n", reflect.ValueOf(&p.Regs[5]).Pointer()-reflect.ValueOf(p).Pointer())
fmt.Fprintf(w, "#define PTRACE_R6 0x%02x\n", reflect.ValueOf(&p.Regs[6]).Pointer()-reflect.ValueOf(p).Pointer())
fmt.Fprintf(w, "#define PTRACE_R7 0x%02x\n", reflect.ValueOf(&p.Regs[7]).Pointer()-reflect.ValueOf(p).Pointer())
fmt.Fprintf(w, "#define PTRACE_R8 0x%02x\n", reflect.ValueOf(&p.Regs[8]).Pointer()-reflect.ValueOf(p).Pointer())
fmt.Fprintf(w, "#define PTRACE_R9 0x%02x\n", reflect.ValueOf(&p.Regs[9]).Pointer()-reflect.ValueOf(p).Pointer())
fmt.Fprintf(w, "#define PTRACE_R10 0x%02x\n", reflect.ValueOf(&p.Regs[10]).Pointer()-reflect.ValueOf(p).Pointer())
fmt.Fprintf(w, "#define PTRACE_R11 0x%02x\n", reflect.ValueOf(&p.Regs[11]).Pointer()-reflect.ValueOf(p).Pointer())
fmt.Fprintf(w, "#define PTRACE_R12 0x%02x\n", reflect.ValueOf(&p.Regs[12]).Pointer()-reflect.ValueOf(p).Pointer())
fmt.Fprintf(w, "#define PTRACE_R13 0x%02x\n", reflect.ValueOf(&p.Regs[13]).Pointer()-reflect.ValueOf(p).Pointer())
fmt.Fprintf(w, "#define PTRACE_R14 0x%02x\n", reflect.ValueOf(&p.Regs[14]).Pointer()-reflect.ValueOf(p).Pointer())
fmt.Fprintf(w, "#define PTRACE_R15 0x%02x\n", reflect.ValueOf(&p.Regs[15]).Pointer()-reflect.ValueOf(p).Pointer())
fmt.Fprintf(w, "#define PTRACE_R16 0x%02x\n", reflect.ValueOf(&p.Regs[16]).Pointer()-reflect.ValueOf(p).Pointer())
fmt.Fprintf(w, "#define PTRACE_R17 0x%02x\n", reflect.ValueOf(&p.Regs[17]).Pointer()-reflect.ValueOf(p).Pointer())
fmt.Fprintf(w, "#define PTRACE_R18 0x%02x\n", reflect.ValueOf(&p.Regs[18]).Pointer()-reflect.ValueOf(p).Pointer())
fmt.Fprintf(w, "#define PTRACE_R19 0x%02x\n", reflect.ValueOf(&p.Regs[19]).Pointer()-reflect.ValueOf(p).Pointer())
fmt.Fprintf(w, "#define PTRACE_R20 0x%02x\n", reflect.ValueOf(&p.Regs[20]).Pointer()-reflect.ValueOf(p).Pointer())
fmt.Fprintf(w, "#define PTRACE_R21 0x%02x\n", reflect.ValueOf(&p.Regs[21]).Pointer()-reflect.ValueOf(p).Pointer())
fmt.Fprintf(w, "#define PTRACE_R22 0x%02x\n", reflect.ValueOf(&p.Regs[22]).Pointer()-reflect.ValueOf(p).Pointer())
fmt.Fprintf(w, "#define PTRACE_R23 0x%02x\n", reflect.ValueOf(&p.Regs[23]).Pointer()-reflect.ValueOf(p).Pointer())
fmt.Fprintf(w, "#define PTRACE_R24 0x%02x\n", reflect.ValueOf(&p.Regs[24]).Pointer()-reflect.ValueOf(p).Pointer())
fmt.Fprintf(w, "#define PTRACE_R25 0x%02x\n", reflect.ValueOf(&p.Regs[25]).Pointer()-reflect.ValueOf(p).Pointer())
fmt.Fprintf(w, "#define PTRACE_R26 0x%02x\n", reflect.ValueOf(&p.Regs[26]).Pointer()-reflect.ValueOf(p).Pointer())
fmt.Fprintf(w, "#define PTRACE_R27 0x%02x\n", reflect.ValueOf(&p.Regs[27]).Pointer()-reflect.ValueOf(p).Pointer())
fmt.Fprintf(w, "#define PTRACE_R28 0x%02x\n", reflect.ValueOf(&p.Regs[28]).Pointer()-reflect.ValueOf(p).Pointer())
fmt.Fprintf(w, "#define PTRACE_R29 0x%02x\n", reflect.ValueOf(&p.Regs[29]).Pointer()-reflect.ValueOf(p).Pointer())
fmt.Fprintf(w, "#define PTRACE_R30 0x%02x\n", reflect.ValueOf(&p.Regs[30]).Pointer()-reflect.ValueOf(p).Pointer())
fmt.Fprintf(w, "#define PTRACE_SP 0x%02x\n", reflect.ValueOf(&p.Sp).Pointer()-reflect.ValueOf(p).Pointer())
fmt.Fprintf(w, "#define PTRACE_PC 0x%02x\n", reflect.ValueOf(&p.Pc).Pointer()-reflect.ValueOf(p).Pointer())
fmt.Fprintf(w, "#define PTRACE_PSTATE 0x%02x\n", reflect.ValueOf(&p.Pstate).Pointer()-reflect.ValueOf(p).Pointer())
}
|