1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
|
package ring0
import (
"gvisor.dev/gvisor/pkg/cpuid"
"reflect"
"syscall"
"fmt"
"gvisor.dev/gvisor/pkg/sentry/platform/ring0/pagetables"
"gvisor.dev/gvisor/pkg/sentry/usermem"
"io"
)
var (
// UserspaceSize is the total size of userspace.
UserspaceSize = uintptr(1) << (VirtualAddressBits() - 1)
// MaximumUserAddress is the largest possible user address.
MaximumUserAddress = (UserspaceSize - 1) & ^uintptr(usermem.PageSize-1)
// KernelStartAddress is the starting kernel address.
KernelStartAddress = ^uintptr(0) - (UserspaceSize - 1)
)
// Kernel is a global kernel object.
//
// This contains global state, shared by multiple CPUs.
type Kernel struct {
KernelArchState
}
// Hooks are hooks for kernel functions.
type Hooks interface {
// KernelSyscall is called for kernel system calls.
//
// Return from this call will restore registers and return to the kernel: the
// registers must be modified directly.
//
// If this function is not provided, a kernel exception results in halt.
//
// This must be go:nosplit, as this will be on the interrupt stack.
// Closures are permitted, as the pointer to the closure frame is not
// passed on the stack.
KernelSyscall()
// KernelException handles an exception during kernel execution.
//
// Return from this call will restore registers and return to the kernel: the
// registers must be modified directly.
//
// If this function is not provided, a kernel exception results in halt.
//
// This must be go:nosplit, as this will be on the interrupt stack.
// Closures are permitted, as the pointer to the closure frame is not
// passed on the stack.
KernelException(Vector)
}
// CPU is the per-CPU struct.
type CPU struct {
// self is a self reference.
//
// This is always guaranteed to be at offset zero.
self *CPU
// kernel is reference to the kernel that this CPU was initialized
// with. This reference is kept for garbage collection purposes: CPU
// registers may refer to objects within the Kernel object that cannot
// be safely freed.
kernel *Kernel
// CPUArchState is architecture-specific state.
CPUArchState
// registers is a set of registers; these may be used on kernel system
// calls and exceptions via the Registers function.
registers syscall.PtraceRegs
// hooks are kernel hooks.
hooks Hooks
}
// Registers returns a modifiable-copy of the kernel registers.
//
// This is explicitly safe to call during KernelException and KernelSyscall.
//
//go:nosplit
func (c *CPU) Registers() *syscall.PtraceRegs {
return &c.registers
}
// SwitchOpts are passed to the Switch function.
type SwitchOpts struct {
// Registers are the user register state.
Registers *syscall.PtraceRegs
// FloatingPointState is a byte pointer where floating point state is
// saved and restored.
FloatingPointState *byte
// PageTables are the application page tables.
PageTables *pagetables.PageTables
// Flush indicates that a TLB flush should be forced on switch.
Flush bool
// FullRestore indicates that an iret-based restore should be used.
FullRestore bool
// SwitchArchOpts are architecture-specific options.
SwitchArchOpts
}
// Segment indices and Selectors.
const (
// Index into GDT array.
_ = iota // Null descriptor first.
_ // Reserved (Linux is kernel 32).
segKcode // Kernel code (64-bit).
segKdata // Kernel data.
segUcode32 // User code (32-bit).
segUdata // User data.
segUcode64 // User code (64-bit).
segTss // Task segment descriptor.
segTssHi // Upper bits for TSS.
segLast // Last segment (terminal, not included).
)
// Selectors.
const (
Kcode Selector = segKcode << 3
Kdata Selector = segKdata << 3
Ucode32 Selector = (segUcode32 << 3) | 3
Udata Selector = (segUdata << 3) | 3
Ucode64 Selector = (segUcode64 << 3) | 3
Tss Selector = segTss << 3
)
// Standard segments.
var (
UserCodeSegment32 SegmentDescriptor
UserDataSegment SegmentDescriptor
UserCodeSegment64 SegmentDescriptor
KernelCodeSegment SegmentDescriptor
KernelDataSegment SegmentDescriptor
)
// KernelOpts has initialization options for the kernel.
type KernelOpts struct {
// PageTables are the kernel pagetables; this must be provided.
PageTables *pagetables.PageTables
}
// KernelArchState contains architecture-specific state.
type KernelArchState struct {
KernelOpts
// globalIDT is our set of interrupt gates.
globalIDT idt64
}
// CPUArchState contains CPU-specific arch state.
type CPUArchState struct {
// stack is the stack used for interrupts on this CPU.
stack [256]byte
// errorCode is the error code from the last exception.
errorCode uintptr
// errorType indicates the type of error code here, it is always set
// along with the errorCode value above.
//
// It will either by 1, which indicates a user error, or 0 indicating a
// kernel error. If the error code below returns false (kernel error),
// then it cannot provide relevant information about the last
// exception.
errorType uintptr
// gdt is the CPU's descriptor table.
gdt descriptorTable
// tss is the CPU's task state.
tss TaskState64
}
// ErrorCode returns the last error code.
//
// The returned boolean indicates whether the error code corresponds to the
// last user error or not. If it does not, then fault information must be
// ignored. This is generally the result of a kernel fault while servicing a
// user fault.
//
//go:nosplit
func (c *CPU) ErrorCode() (value uintptr, user bool) {
return c.errorCode, c.errorType != 0
}
// ClearErrorCode resets the error code.
//
//go:nosplit
func (c *CPU) ClearErrorCode() {
c.errorCode = 0
c.errorType = 1
}
// SwitchArchOpts are embedded in SwitchOpts.
type SwitchArchOpts struct {
// UserPCID indicates that the application PCID to be used on switch,
// assuming that PCIDs are supported.
//
// Per pagetables_x86.go, a zero PCID implies a flush.
UserPCID uint16
// KernelPCID indicates that the kernel PCID to be used on return,
// assuming that PCIDs are supported.
//
// Per pagetables_x86.go, a zero PCID implies a flush.
KernelPCID uint16
}
func init() {
KernelCodeSegment.setCode64(0, 0, 0)
KernelDataSegment.setData(0, 0xffffffff, 0)
UserCodeSegment32.setCode64(0, 0, 3)
UserDataSegment.setData(0, 0xffffffff, 3)
UserCodeSegment64.setCode64(0, 0, 3)
}
// Emit prints architecture-specific offsets.
func Emit(w io.Writer) {
fmt.Fprintf(w, "// Automatically generated, do not edit.\n")
c := &CPU{}
fmt.Fprintf(w, "\n// CPU offsets.\n")
fmt.Fprintf(w, "#define CPU_SELF 0x%02x\n", reflect.ValueOf(&c.self).Pointer()-reflect.ValueOf(c).Pointer())
fmt.Fprintf(w, "#define CPU_REGISTERS 0x%02x\n", reflect.ValueOf(&c.registers).Pointer()-reflect.ValueOf(c).Pointer())
fmt.Fprintf(w, "#define CPU_STACK_TOP 0x%02x\n", reflect.ValueOf(&c.stack[0]).Pointer()-reflect.ValueOf(c).Pointer()+uintptr(len(c.stack)))
fmt.Fprintf(w, "#define CPU_ERROR_CODE 0x%02x\n", reflect.ValueOf(&c.errorCode).Pointer()-reflect.ValueOf(c).Pointer())
fmt.Fprintf(w, "#define CPU_ERROR_TYPE 0x%02x\n", reflect.ValueOf(&c.errorType).Pointer()-reflect.ValueOf(c).Pointer())
fmt.Fprintf(w, "\n// Bits.\n")
fmt.Fprintf(w, "#define _RFLAGS_IF 0x%02x\n", _RFLAGS_IF)
fmt.Fprintf(w, "#define _KERNEL_FLAGS 0x%02x\n", KernelFlagsSet)
fmt.Fprintf(w, "\n// Vectors.\n")
fmt.Fprintf(w, "#define DivideByZero 0x%02x\n", DivideByZero)
fmt.Fprintf(w, "#define Debug 0x%02x\n", Debug)
fmt.Fprintf(w, "#define NMI 0x%02x\n", NMI)
fmt.Fprintf(w, "#define Breakpoint 0x%02x\n", Breakpoint)
fmt.Fprintf(w, "#define Overflow 0x%02x\n", Overflow)
fmt.Fprintf(w, "#define BoundRangeExceeded 0x%02x\n", BoundRangeExceeded)
fmt.Fprintf(w, "#define InvalidOpcode 0x%02x\n", InvalidOpcode)
fmt.Fprintf(w, "#define DeviceNotAvailable 0x%02x\n", DeviceNotAvailable)
fmt.Fprintf(w, "#define DoubleFault 0x%02x\n", DoubleFault)
fmt.Fprintf(w, "#define CoprocessorSegmentOverrun 0x%02x\n", CoprocessorSegmentOverrun)
fmt.Fprintf(w, "#define InvalidTSS 0x%02x\n", InvalidTSS)
fmt.Fprintf(w, "#define SegmentNotPresent 0x%02x\n", SegmentNotPresent)
fmt.Fprintf(w, "#define StackSegmentFault 0x%02x\n", StackSegmentFault)
fmt.Fprintf(w, "#define GeneralProtectionFault 0x%02x\n", GeneralProtectionFault)
fmt.Fprintf(w, "#define PageFault 0x%02x\n", PageFault)
fmt.Fprintf(w, "#define X87FloatingPointException 0x%02x\n", X87FloatingPointException)
fmt.Fprintf(w, "#define AlignmentCheck 0x%02x\n", AlignmentCheck)
fmt.Fprintf(w, "#define MachineCheck 0x%02x\n", MachineCheck)
fmt.Fprintf(w, "#define SIMDFloatingPointException 0x%02x\n", SIMDFloatingPointException)
fmt.Fprintf(w, "#define VirtualizationException 0x%02x\n", VirtualizationException)
fmt.Fprintf(w, "#define SecurityException 0x%02x\n", SecurityException)
fmt.Fprintf(w, "#define SyscallInt80 0x%02x\n", SyscallInt80)
fmt.Fprintf(w, "#define Syscall 0x%02x\n", Syscall)
p := &syscall.PtraceRegs{}
fmt.Fprintf(w, "\n// Ptrace registers.\n")
fmt.Fprintf(w, "#define PTRACE_R15 0x%02x\n", reflect.ValueOf(&p.R15).Pointer()-reflect.ValueOf(p).Pointer())
fmt.Fprintf(w, "#define PTRACE_R14 0x%02x\n", reflect.ValueOf(&p.R14).Pointer()-reflect.ValueOf(p).Pointer())
fmt.Fprintf(w, "#define PTRACE_R13 0x%02x\n", reflect.ValueOf(&p.R13).Pointer()-reflect.ValueOf(p).Pointer())
fmt.Fprintf(w, "#define PTRACE_R12 0x%02x\n", reflect.ValueOf(&p.R12).Pointer()-reflect.ValueOf(p).Pointer())
fmt.Fprintf(w, "#define PTRACE_RBP 0x%02x\n", reflect.ValueOf(&p.Rbp).Pointer()-reflect.ValueOf(p).Pointer())
fmt.Fprintf(w, "#define PTRACE_RBX 0x%02x\n", reflect.ValueOf(&p.Rbx).Pointer()-reflect.ValueOf(p).Pointer())
fmt.Fprintf(w, "#define PTRACE_R11 0x%02x\n", reflect.ValueOf(&p.R11).Pointer()-reflect.ValueOf(p).Pointer())
fmt.Fprintf(w, "#define PTRACE_R10 0x%02x\n", reflect.ValueOf(&p.R10).Pointer()-reflect.ValueOf(p).Pointer())
fmt.Fprintf(w, "#define PTRACE_R9 0x%02x\n", reflect.ValueOf(&p.R9).Pointer()-reflect.ValueOf(p).Pointer())
fmt.Fprintf(w, "#define PTRACE_R8 0x%02x\n", reflect.ValueOf(&p.R8).Pointer()-reflect.ValueOf(p).Pointer())
fmt.Fprintf(w, "#define PTRACE_RAX 0x%02x\n", reflect.ValueOf(&p.Rax).Pointer()-reflect.ValueOf(p).Pointer())
fmt.Fprintf(w, "#define PTRACE_RCX 0x%02x\n", reflect.ValueOf(&p.Rcx).Pointer()-reflect.ValueOf(p).Pointer())
fmt.Fprintf(w, "#define PTRACE_RDX 0x%02x\n", reflect.ValueOf(&p.Rdx).Pointer()-reflect.ValueOf(p).Pointer())
fmt.Fprintf(w, "#define PTRACE_RSI 0x%02x\n", reflect.ValueOf(&p.Rsi).Pointer()-reflect.ValueOf(p).Pointer())
fmt.Fprintf(w, "#define PTRACE_RDI 0x%02x\n", reflect.ValueOf(&p.Rdi).Pointer()-reflect.ValueOf(p).Pointer())
fmt.Fprintf(w, "#define PTRACE_ORIGRAX 0x%02x\n", reflect.ValueOf(&p.Orig_rax).Pointer()-reflect.ValueOf(p).Pointer())
fmt.Fprintf(w, "#define PTRACE_RIP 0x%02x\n", reflect.ValueOf(&p.Rip).Pointer()-reflect.ValueOf(p).Pointer())
fmt.Fprintf(w, "#define PTRACE_CS 0x%02x\n", reflect.ValueOf(&p.Cs).Pointer()-reflect.ValueOf(p).Pointer())
fmt.Fprintf(w, "#define PTRACE_FLAGS 0x%02x\n", reflect.ValueOf(&p.Eflags).Pointer()-reflect.ValueOf(p).Pointer())
fmt.Fprintf(w, "#define PTRACE_RSP 0x%02x\n", reflect.ValueOf(&p.Rsp).Pointer()-reflect.ValueOf(p).Pointer())
fmt.Fprintf(w, "#define PTRACE_SS 0x%02x\n", reflect.ValueOf(&p.Ss).Pointer()-reflect.ValueOf(p).Pointer())
fmt.Fprintf(w, "#define PTRACE_FS 0x%02x\n", reflect.ValueOf(&p.Fs_base).Pointer()-reflect.ValueOf(p).Pointer())
fmt.Fprintf(w, "#define PTRACE_GS 0x%02x\n", reflect.ValueOf(&p.Gs_base).Pointer()-reflect.ValueOf(p).Pointer())
}
// Useful bits.
const (
_CR0_PE = 1 << 0
_CR0_ET = 1 << 4
_CR0_AM = 1 << 18
_CR0_PG = 1 << 31
_CR4_PSE = 1 << 4
_CR4_PAE = 1 << 5
_CR4_PGE = 1 << 7
_CR4_OSFXSR = 1 << 9
_CR4_OSXMMEXCPT = 1 << 10
_CR4_FSGSBASE = 1 << 16
_CR4_PCIDE = 1 << 17
_CR4_OSXSAVE = 1 << 18
_CR4_SMEP = 1 << 20
_RFLAGS_AC = 1 << 18
_RFLAGS_NT = 1 << 14
_RFLAGS_IOPL = 3 << 12
_RFLAGS_DF = 1 << 10
_RFLAGS_IF = 1 << 9
_RFLAGS_STEP = 1 << 8
_RFLAGS_RESERVED = 1 << 1
_EFER_SCE = 0x001
_EFER_LME = 0x100
_EFER_LMA = 0x400
_EFER_NX = 0x800
_MSR_STAR = 0xc0000081
_MSR_LSTAR = 0xc0000082
_MSR_CSTAR = 0xc0000083
_MSR_SYSCALL_MASK = 0xc0000084
_MSR_PLATFORM_INFO = 0xce
_MSR_MISC_FEATURES = 0x140
_PLATFORM_INFO_CPUID_FAULT = 1 << 31
_MISC_FEATURE_CPUID_TRAP = 0x1
)
const (
// KernelFlagsSet should always be set in the kernel.
KernelFlagsSet = _RFLAGS_RESERVED
// UserFlagsSet are always set in userspace.
UserFlagsSet = _RFLAGS_RESERVED | _RFLAGS_IF
// KernelFlagsClear should always be clear in the kernel.
KernelFlagsClear = _RFLAGS_STEP | _RFLAGS_IF | _RFLAGS_IOPL | _RFLAGS_AC | _RFLAGS_NT
// UserFlagsClear are always cleared in userspace.
UserFlagsClear = _RFLAGS_NT | _RFLAGS_IOPL
)
// Vector is an exception vector.
type Vector uintptr
// Exception vectors.
const (
DivideByZero Vector = iota
Debug
NMI
Breakpoint
Overflow
BoundRangeExceeded
InvalidOpcode
DeviceNotAvailable
DoubleFault
CoprocessorSegmentOverrun
InvalidTSS
SegmentNotPresent
StackSegmentFault
GeneralProtectionFault
PageFault
_
X87FloatingPointException
AlignmentCheck
MachineCheck
SIMDFloatingPointException
VirtualizationException
SecurityException = 0x1e
SyscallInt80 = 0x80
_NR_INTERRUPTS = SyscallInt80 + 1
)
// System call vectors.
const (
Syscall Vector = _NR_INTERRUPTS
)
// VirtualAddressBits returns the number bits available for virtual addresses.
//
// Note that sign-extension semantics apply to the highest order bit.
//
// FIXME(b/69382326): This should use the cpuid passed to Init.
func VirtualAddressBits() uint32 {
ax, _, _, _ := cpuid.HostID(0x80000008, 0)
return (ax >> 8) & 0xff
}
// PhysicalAddressBits returns the number of bits available for physical addresses.
//
// FIXME(b/69382326): This should use the cpuid passed to Init.
func PhysicalAddressBits() uint32 {
ax, _, _, _ := cpuid.HostID(0x80000008, 0)
return ax & 0xff
}
// Selector is a segment Selector.
type Selector uint16
// SegmentDescriptor is a segment descriptor.
type SegmentDescriptor struct {
bits [2]uint32
}
// descriptorTable is a collection of descriptors.
type descriptorTable [32]SegmentDescriptor
// SegmentDescriptorFlags are typed flags within a descriptor.
type SegmentDescriptorFlags uint32
// SegmentDescriptorFlag declarations.
const (
SegmentDescriptorAccess SegmentDescriptorFlags = 1 << 8 // Access bit (always set).
SegmentDescriptorWrite = 1 << 9 // Write permission.
SegmentDescriptorExpandDown = 1 << 10 // Grows down, not used.
SegmentDescriptorExecute = 1 << 11 // Execute permission.
SegmentDescriptorSystem = 1 << 12 // Zero => system, 1 => user code/data.
SegmentDescriptorPresent = 1 << 15 // Present.
SegmentDescriptorAVL = 1 << 20 // Available.
SegmentDescriptorLong = 1 << 21 // Long mode.
SegmentDescriptorDB = 1 << 22 // 16 or 32-bit.
SegmentDescriptorG = 1 << 23 // Granularity: page or byte.
)
// Base returns the descriptor's base linear address.
func (d *SegmentDescriptor) Base() uint32 {
return d.bits[1]&0xFF000000 | (d.bits[1]&0x000000FF)<<16 | d.bits[0]>>16
}
// Limit returns the descriptor size.
func (d *SegmentDescriptor) Limit() uint32 {
l := d.bits[0]&0xFFFF | d.bits[1]&0xF0000
if d.bits[1]&uint32(SegmentDescriptorG) != 0 {
l <<= 12
l |= 0xFFF
}
return l
}
// Flags returns descriptor flags.
func (d *SegmentDescriptor) Flags() SegmentDescriptorFlags {
return SegmentDescriptorFlags(d.bits[1] & 0x00F09F00)
}
// DPL returns the descriptor privilege level.
func (d *SegmentDescriptor) DPL() int {
return int((d.bits[1] >> 13) & 3)
}
func (d *SegmentDescriptor) setNull() {
d.bits[0] = 0
d.bits[1] = 0
}
func (d *SegmentDescriptor) set(base, limit uint32, dpl int, flags SegmentDescriptorFlags) {
flags |= SegmentDescriptorPresent
if limit>>12 != 0 {
limit >>= 12
flags |= SegmentDescriptorG
}
d.bits[0] = base<<16 | limit&0xFFFF
d.bits[1] = base&0xFF000000 | (base>>16)&0xFF | limit&0x000F0000 | uint32(flags) | uint32(dpl)<<13
}
func (d *SegmentDescriptor) setCode32(base, limit uint32, dpl int) {
d.set(base, limit, dpl,
SegmentDescriptorDB|
SegmentDescriptorExecute|
SegmentDescriptorSystem)
}
func (d *SegmentDescriptor) setCode64(base, limit uint32, dpl int) {
d.set(base, limit, dpl,
SegmentDescriptorG|
SegmentDescriptorLong|
SegmentDescriptorExecute|
SegmentDescriptorSystem)
}
func (d *SegmentDescriptor) setData(base, limit uint32, dpl int) {
d.set(base, limit, dpl,
SegmentDescriptorWrite|
SegmentDescriptorSystem)
}
// setHi is only used for the TSS segment, which is magically 64-bits.
func (d *SegmentDescriptor) setHi(base uint32) {
d.bits[0] = base
d.bits[1] = 0
}
// Gate64 is a 64-bit task, trap, or interrupt gate.
type Gate64 struct {
bits [4]uint32
}
// idt64 is a 64-bit interrupt descriptor table.
type idt64 [_NR_INTERRUPTS]Gate64
func (g *Gate64) setInterrupt(cs Selector, rip uint64, dpl int, ist int) {
g.bits[0] = uint32(cs)<<16 | uint32(rip)&0xFFFF
g.bits[1] = uint32(rip)&0xFFFF0000 | SegmentDescriptorPresent | uint32(dpl)<<13 | 14<<8 | uint32(ist)&0x7
g.bits[2] = uint32(rip >> 32)
}
func (g *Gate64) setTrap(cs Selector, rip uint64, dpl int, ist int) {
g.setInterrupt(cs, rip, dpl, ist)
g.bits[1] |= 1 << 8
}
// TaskState64 is a 64-bit task state structure.
type TaskState64 struct {
_ uint32
rsp0Lo, rsp0Hi uint32
rsp1Lo, rsp1Hi uint32
rsp2Lo, rsp2Hi uint32
_ [2]uint32
ist1Lo, ist1Hi uint32
ist2Lo, ist2Hi uint32
ist3Lo, ist3Hi uint32
ist4Lo, ist4Hi uint32
ist5Lo, ist5Hi uint32
ist6Lo, ist6Hi uint32
ist7Lo, ist7Hi uint32
_ [2]uint32
_ uint16
ioPerm uint16
}
|