1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// +build linux
// +build amd64 arm64
package ptrace
import (
"sync"
"sync/atomic"
"syscall"
"unsafe"
"golang.org/x/sys/unix"
"gvisor.dev/gvisor/pkg/abi/linux"
)
// maskPool contains reusable CPU masks for setting affinity. Unfortunately,
// runtime.NumCPU doesn't actually record the number of CPUs on the system, it
// just records the number of CPUs available in the scheduler affinity set at
// startup. This may a) change over time and b) gives a number far lower than
// the maximum indexable CPU. To prevent lots of allocation in the hot path, we
// use a pool to store large masks that we can reuse during bind.
var maskPool = sync.Pool{
New: func() interface{} {
const maxCPUs = 1024 // Not a hard limit; see below.
return make([]uintptr, maxCPUs/64)
},
}
// unmaskAllSignals unmasks all signals on the current thread.
//
//go:nosplit
func unmaskAllSignals() syscall.Errno {
var set linux.SignalSet
_, _, errno := syscall.RawSyscall6(syscall.SYS_RT_SIGPROCMASK, linux.SIG_SETMASK, uintptr(unsafe.Pointer(&set)), 0, linux.SignalSetSize, 0, 0)
return errno
}
// getCPU gets the current CPU.
//
// Precondition: the current runtime thread should be locked.
func getCPU() (uint32, error) {
var cpu uintptr
if _, _, errno := syscall.RawSyscall(
unix.SYS_GETCPU,
uintptr(unsafe.Pointer(&cpu)),
0, 0); errno != 0 {
return 0, errno
}
return uint32(cpu), nil
}
// setCPU sets the CPU affinity.
func (t *thread) setCPU(cpu uint32) error {
mask := maskPool.Get().([]uintptr)
n := int(cpu / 64)
v := uintptr(1 << uintptr(cpu%64))
if n >= len(mask) {
// See maskPool note above. We've actually exceeded the number
// of available cores. Grow the mask and return it.
mask = make([]uintptr, n+1)
}
mask[n] |= v
if _, _, errno := syscall.RawSyscall(
unix.SYS_SCHED_SETAFFINITY,
uintptr(t.tid),
uintptr(len(mask)*8),
uintptr(unsafe.Pointer(&mask[0]))); errno != 0 {
return errno
}
mask[n] &^= v
maskPool.Put(mask)
return nil
}
// bind attempts to ensure that the thread is on the same CPU as the current
// thread. This provides no guarantees as it is fundamentally a racy operation:
// CPU sets may change and we may be rescheduled in the middle of this
// operation. As a result, no failures are reported.
//
// Precondition: the current runtime thread should be locked.
func (t *thread) bind() {
currentCPU, err := getCPU()
if err != nil {
return
}
if oldCPU := atomic.SwapUint32(&t.cpu, currentCPU); oldCPU != currentCPU {
// Set the affinity on the thread and save the CPU for next
// round; we don't expect CPUs to bounce around too frequently.
//
// (It's worth noting that we could move CPUs between this point
// and when the tracee finishes executing. But that would be
// roughly the status quo anyways -- we're just maximizing our
// chances of colocation, not guaranteeing it.)
t.setCPU(currentCPU)
}
}
|