1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
|
// Copyright 2019 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// +build arm64
package ptrace
import (
"fmt"
"strings"
"syscall"
"gvisor.dev/gvisor/pkg/abi/linux"
"gvisor.dev/gvisor/pkg/seccomp"
"gvisor.dev/gvisor/pkg/sentry/arch"
)
const (
// maximumUserAddress is the largest possible user address.
maximumUserAddress = 0xfffffffff000
// stubInitAddress is the initial attempt link address for the stub.
// Only support 48bits VA currently.
stubInitAddress = 0xffffffff0000
// initRegsRipAdjustment is the size of the svc instruction.
initRegsRipAdjustment = 4
)
// resetSysemuRegs sets up emulation registers.
//
// This should be called prior to calling sysemu.
func (t *thread) resetSysemuRegs(regs *syscall.PtraceRegs) {
}
// createSyscallRegs sets up syscall registers.
//
// This should be called to generate registers for a system call.
func createSyscallRegs(initRegs *syscall.PtraceRegs, sysno uintptr, args ...arch.SyscallArgument) syscall.PtraceRegs {
// Copy initial registers (Pc, Sp, etc.).
regs := *initRegs
// Set our syscall number.
// r8 for the syscall number.
// r0-r6 is used to store the parameters.
regs.Regs[8] = uint64(sysno)
if len(args) >= 1 {
regs.Regs[0] = args[0].Uint64()
}
if len(args) >= 2 {
regs.Regs[1] = args[1].Uint64()
}
if len(args) >= 3 {
regs.Regs[2] = args[2].Uint64()
}
if len(args) >= 4 {
regs.Regs[3] = args[3].Uint64()
}
if len(args) >= 5 {
regs.Regs[4] = args[4].Uint64()
}
if len(args) >= 6 {
regs.Regs[5] = args[5].Uint64()
}
return regs
}
// isSingleStepping determines if the registers indicate single-stepping.
func isSingleStepping(regs *syscall.PtraceRegs) bool {
// Refer to the ARM SDM D2.12.3: software step state machine
// return (regs.Pstate.SS == 1) && (MDSCR_EL1.SS == 1).
//
// Since the host Linux kernel will set MDSCR_EL1.SS on our behalf
// when we call a single-step ptrace command, we only need to check
// the Pstate.SS bit here.
return (regs.Pstate & arch.ARMTrapFlag) != 0
}
// updateSyscallRegs updates registers after finishing sysemu.
func updateSyscallRegs(regs *syscall.PtraceRegs) {
// No special work is necessary.
return
}
// syscallReturnValue extracts a sensible return from registers.
func syscallReturnValue(regs *syscall.PtraceRegs) (uintptr, error) {
rval := int64(regs.Regs[0])
if rval < 0 {
return 0, syscall.Errno(-rval)
}
return uintptr(rval), nil
}
func dumpRegs(regs *syscall.PtraceRegs) string {
var m strings.Builder
fmt.Fprintf(&m, "Registers:\n")
for i := 0; i < 31; i++ {
fmt.Fprintf(&m, "\tRegs[%d]\t = %016x\n", i, regs.Regs[i])
}
fmt.Fprintf(&m, "\tSp\t = %016x\n", regs.Sp)
fmt.Fprintf(&m, "\tPc\t = %016x\n", regs.Pc)
fmt.Fprintf(&m, "\tPstate\t = %016x\n", regs.Pstate)
return m.String()
}
// adjustInitregsRip adjust the current register RIP value to
// be just before the system call instruction excution
func (t *thread) adjustInitRegsRip() {
t.initRegs.Pc -= initRegsRipAdjustment
}
// Pass the expected PPID to the child via X7 when creating stub process
func initChildProcessPPID(initregs *syscall.PtraceRegs, ppid int32) {
initregs.Regs[7] = uint64(ppid)
// R9 has to be set to 1 when creating stub process.
initregs.Regs[9] = 1
}
// patchSignalInfo patches the signal info to account for hitting the seccomp
// filters from vsyscall emulation, specified below. We allow for SIGSYS as a
// synchronous trap, but patch the structure to appear like a SIGSEGV with the
// Rip as the faulting address.
//
// Note that this should only be called after verifying that the signalInfo has
// been generated by the kernel.
func patchSignalInfo(regs *syscall.PtraceRegs, signalInfo *arch.SignalInfo) {
if linux.Signal(signalInfo.Signo) == linux.SIGSYS {
signalInfo.Signo = int32(linux.SIGSEGV)
// Unwind the kernel emulation, if any has occurred. A SIGSYS is delivered
// with the si_call_addr field pointing to the current RIP. This field
// aligns with the si_addr field for a SIGSEGV, so we don't need to touch
// anything there. We do need to unwind emulation however, so we set the
// instruction pointer to the faulting value, and "unpop" the stack.
regs.Pc = signalInfo.Addr()
regs.Sp -= 8
}
}
// Noop on arm64.
//
//go:nosplit
func enableCpuidFault() {
}
// appendArchSeccompRules append architecture specific seccomp rules when creating BPF program.
// Ref attachedThread() for more detail.
func appendArchSeccompRules(rules []seccomp.RuleSet, defaultAction linux.BPFAction) []seccomp.RuleSet {
return rules
}
// probeSeccomp returns true if seccomp is run after ptrace notifications,
// which is generally the case for kernel version >= 4.8.
//
// On arm64, the support of PTRACE_SYSEMU was added in the 5.3 kernel, so
// probeSeccomp can always return true.
func probeSeccomp() bool {
return true
}
|