1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// +build amd64
package ptrace
import (
"fmt"
"strings"
"syscall"
"golang.org/x/sys/unix"
"gvisor.dev/gvisor/pkg/abi/linux"
"gvisor.dev/gvisor/pkg/seccomp"
"gvisor.dev/gvisor/pkg/sentry/arch"
)
const (
// maximumUserAddress is the largest possible user address.
maximumUserAddress = 0x7ffffffff000
// stubInitAddress is the initial attempt link address for the stub.
stubInitAddress = 0x7fffffff0000
// initRegsRipAdjustment is the size of the syscall instruction.
initRegsRipAdjustment = 2
)
// resetSysemuRegs sets up emulation registers.
//
// This should be called prior to calling sysemu.
func (t *thread) resetSysemuRegs(regs *syscall.PtraceRegs) {
regs.Cs = t.initRegs.Cs
regs.Ss = t.initRegs.Ss
regs.Ds = t.initRegs.Ds
regs.Es = t.initRegs.Es
regs.Fs = t.initRegs.Fs
regs.Gs = t.initRegs.Gs
}
// createSyscallRegs sets up syscall registers.
//
// This should be called to generate registers for a system call.
func createSyscallRegs(initRegs *syscall.PtraceRegs, sysno uintptr, args ...arch.SyscallArgument) syscall.PtraceRegs {
// Copy initial registers.
regs := *initRegs
// Set our syscall number.
regs.Rax = uint64(sysno)
if len(args) >= 1 {
regs.Rdi = args[0].Uint64()
}
if len(args) >= 2 {
regs.Rsi = args[1].Uint64()
}
if len(args) >= 3 {
regs.Rdx = args[2].Uint64()
}
if len(args) >= 4 {
regs.R10 = args[3].Uint64()
}
if len(args) >= 5 {
regs.R8 = args[4].Uint64()
}
if len(args) >= 6 {
regs.R9 = args[5].Uint64()
}
return regs
}
// isSingleStepping determines if the registers indicate single-stepping.
func isSingleStepping(regs *syscall.PtraceRegs) bool {
return (regs.Eflags & arch.X86TrapFlag) != 0
}
// updateSyscallRegs updates registers after finishing sysemu.
func updateSyscallRegs(regs *syscall.PtraceRegs) {
// Ptrace puts -ENOSYS in rax on syscall-enter-stop.
regs.Rax = regs.Orig_rax
}
// syscallReturnValue extracts a sensible return from registers.
func syscallReturnValue(regs *syscall.PtraceRegs) (uintptr, error) {
rval := int64(regs.Rax)
if rval < 0 {
return 0, syscall.Errno(-rval)
}
return uintptr(rval), nil
}
func dumpRegs(regs *syscall.PtraceRegs) string {
var m strings.Builder
fmt.Fprintf(&m, "Registers:\n")
fmt.Fprintf(&m, "\tR15\t = %016x\n", regs.R15)
fmt.Fprintf(&m, "\tR14\t = %016x\n", regs.R14)
fmt.Fprintf(&m, "\tR13\t = %016x\n", regs.R13)
fmt.Fprintf(&m, "\tR12\t = %016x\n", regs.R12)
fmt.Fprintf(&m, "\tRbp\t = %016x\n", regs.Rbp)
fmt.Fprintf(&m, "\tRbx\t = %016x\n", regs.Rbx)
fmt.Fprintf(&m, "\tR11\t = %016x\n", regs.R11)
fmt.Fprintf(&m, "\tR10\t = %016x\n", regs.R10)
fmt.Fprintf(&m, "\tR9\t = %016x\n", regs.R9)
fmt.Fprintf(&m, "\tR8\t = %016x\n", regs.R8)
fmt.Fprintf(&m, "\tRax\t = %016x\n", regs.Rax)
fmt.Fprintf(&m, "\tRcx\t = %016x\n", regs.Rcx)
fmt.Fprintf(&m, "\tRdx\t = %016x\n", regs.Rdx)
fmt.Fprintf(&m, "\tRsi\t = %016x\n", regs.Rsi)
fmt.Fprintf(&m, "\tRdi\t = %016x\n", regs.Rdi)
fmt.Fprintf(&m, "\tOrig_rax = %016x\n", regs.Orig_rax)
fmt.Fprintf(&m, "\tRip\t = %016x\n", regs.Rip)
fmt.Fprintf(&m, "\tCs\t = %016x\n", regs.Cs)
fmt.Fprintf(&m, "\tEflags\t = %016x\n", regs.Eflags)
fmt.Fprintf(&m, "\tRsp\t = %016x\n", regs.Rsp)
fmt.Fprintf(&m, "\tSs\t = %016x\n", regs.Ss)
fmt.Fprintf(&m, "\tFs_base\t = %016x\n", regs.Fs_base)
fmt.Fprintf(&m, "\tGs_base\t = %016x\n", regs.Gs_base)
fmt.Fprintf(&m, "\tDs\t = %016x\n", regs.Ds)
fmt.Fprintf(&m, "\tEs\t = %016x\n", regs.Es)
fmt.Fprintf(&m, "\tFs\t = %016x\n", regs.Fs)
fmt.Fprintf(&m, "\tGs\t = %016x\n", regs.Gs)
return m.String()
}
// adjustInitregsRip adjust the current register RIP value to
// be just before the system call instruction excution
func (t *thread) adjustInitRegsRip() {
t.initRegs.Rip -= initRegsRipAdjustment
}
// Pass the expected PPID to the child via R15 when creating stub process.
func initChildProcessPPID(initregs *syscall.PtraceRegs, ppid int32) {
initregs.R15 = uint64(ppid)
// Rbx has to be set to 1 when creating stub process.
initregs.Rbx = 1
}
// patchSignalInfo patches the signal info to account for hitting the seccomp
// filters from vsyscall emulation, specified below. We allow for SIGSYS as a
// synchronous trap, but patch the structure to appear like a SIGSEGV with the
// Rip as the faulting address.
//
// Note that this should only be called after verifying that the signalInfo has
// been generated by the kernel.
func patchSignalInfo(regs *syscall.PtraceRegs, signalInfo *arch.SignalInfo) {
if linux.Signal(signalInfo.Signo) == linux.SIGSYS {
signalInfo.Signo = int32(linux.SIGSEGV)
// Unwind the kernel emulation, if any has occurred. A SIGSYS is delivered
// with the si_call_addr field pointing to the current RIP. This field
// aligns with the si_addr field for a SIGSEGV, so we don't need to touch
// anything there. We do need to unwind emulation however, so we set the
// instruction pointer to the faulting value, and "unpop" the stack.
regs.Rip = signalInfo.Addr()
regs.Rsp -= 8
}
}
// enableCpuidFault enables cpuid-faulting.
//
// This may fail on older kernels or hardware, so we just disregard the result.
// Host CPUID will be enabled.
//
// This is safe to call in an afterFork context.
//
//go:nosplit
func enableCpuidFault() {
syscall.RawSyscall6(syscall.SYS_ARCH_PRCTL, linux.ARCH_SET_CPUID, 0, 0, 0, 0, 0)
}
// appendArchSeccompRules append architecture specific seccomp rules when creating BPF program.
// Ref attachedThread() for more detail.
func appendArchSeccompRules(rules []seccomp.RuleSet, defaultAction linux.BPFAction) []seccomp.RuleSet {
rules = append(rules,
// Rules for trapping vsyscall access.
seccomp.RuleSet{
Rules: seccomp.SyscallRules{
syscall.SYS_GETTIMEOFDAY: {},
syscall.SYS_TIME: {},
unix.SYS_GETCPU: {}, // SYS_GETCPU was not defined in package syscall on amd64.
},
Action: linux.SECCOMP_RET_TRAP,
Vsyscall: true,
})
if defaultAction != linux.SECCOMP_RET_ALLOW {
rules = append(rules,
seccomp.RuleSet{
Rules: seccomp.SyscallRules{
syscall.SYS_ARCH_PRCTL: []seccomp.Rule{
{seccomp.AllowValue(linux.ARCH_SET_CPUID), seccomp.AllowValue(0)},
},
},
Action: linux.SECCOMP_RET_ALLOW,
})
}
return rules
}
// probeSeccomp returns true iff seccomp is run after ptrace notifications,
// which is generally the case for kernel version >= 4.8. This check is dynamic
// because kernels have be backported behavior.
//
// See createStub for more information.
//
// Precondition: the runtime OS thread must be locked.
func probeSeccomp() bool {
// Create a completely new, destroyable process.
t, err := attachedThread(0, linux.SECCOMP_RET_ERRNO)
if err != nil {
panic(fmt.Sprintf("seccomp probe failed: %v", err))
}
defer t.destroy()
// Set registers to the yield system call. This call is not allowed
// by the filters specified in the attachThread function.
regs := createSyscallRegs(&t.initRegs, syscall.SYS_SCHED_YIELD)
if err := t.setRegs(®s); err != nil {
panic(fmt.Sprintf("ptrace set regs failed: %v", err))
}
for {
// Attempt an emulation.
if _, _, errno := syscall.RawSyscall6(syscall.SYS_PTRACE, unix.PTRACE_SYSEMU, uintptr(t.tid), 0, 0, 0, 0); errno != 0 {
panic(fmt.Sprintf("ptrace syscall-enter failed: %v", errno))
}
sig := t.wait(stopped)
if sig == (syscallEvent | syscall.SIGTRAP) {
// Did the seccomp errno hook already run? This would
// indicate that seccomp is first in line and we're
// less than 4.8.
if err := t.getRegs(®s); err != nil {
panic(fmt.Sprintf("ptrace get-regs failed: %v", err))
}
if _, err := syscallReturnValue(®s); err == nil {
// The seccomp errno mode ran first, and reset
// the error in the registers.
return false
}
// The seccomp hook did not run yet, and therefore it
// is safe to use RET_KILL mode for dispatched calls.
return true
}
}
}
|