summaryrefslogtreecommitdiffhomepage
path: root/pkg/sentry/platform/ptrace/subprocess.go
blob: 83b43057ff1824a36bda4c1f95bf20c3ca6fa46c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

package ptrace

import (
	"fmt"
	"os"
	"runtime"
	"sync"
	"syscall"

	"gvisor.googlesource.com/gvisor/pkg/sentry/arch"
	"gvisor.googlesource.com/gvisor/pkg/sentry/platform"
	"gvisor.googlesource.com/gvisor/pkg/sentry/platform/procid"
	"gvisor.googlesource.com/gvisor/pkg/sentry/usermem"
)

// globalPool exists to solve two distinct problems:
//
// 1) Subprocesses can't always be killed properly (see Release).
//
// 2) Any seccomp filters that have been installed will apply to subprocesses
// created here. Therefore we use the intermediary (master), which is created
// on initialization of the platform.
var globalPool struct {
	mu        sync.Mutex
	master    *subprocess
	available []*subprocess
}

// thread is a traced thread; it is a thread identifier.
//
// This is a convenience type for defining ptrace operations.
type thread struct {
	tgid int32
	tid  int32
	cpu  uint32

	// initRegs are the initial registers for the first thread.
	//
	// These are used for the register set for system calls.
	initRegs syscall.PtraceRegs
}

// threadPool is a collection of threads.
type threadPool struct {
	// mu protects below.
	mu sync.Mutex

	// threads is the collection of threads.
	//
	// This map is indexed by system TID (the calling thread); which will
	// be the tracer for the given *thread, and therefore capable of using
	// relevant ptrace calls.
	threads map[int32]*thread
}

// lookupOrCreate looks up a given thread or creates one.
//
// newThread will generally be subprocess.newThread.
//
// Precondition: the runtime OS thread must be locked.
func (tp *threadPool) lookupOrCreate(currentTID int32, newThread func() *thread) *thread {
	tp.mu.Lock()
	t, ok := tp.threads[currentTID]
	if !ok {
		// Before creating a new thread, see if we can find a thread
		// whose system tid has disappeared.
		//
		// TODO(b/77216482): Other parts of this package depend on
		// threads never exiting.
		for origTID, t := range tp.threads {
			// Signal zero is an easy existence check.
			if err := syscall.Tgkill(syscall.Getpid(), int(origTID), 0); err != nil {
				// This thread has been abandoned; reuse it.
				delete(tp.threads, origTID)
				tp.threads[currentTID] = t
				tp.mu.Unlock()
				return t
			}
		}

		// Create a new thread.
		t = newThread()
		tp.threads[currentTID] = t
	}
	tp.mu.Unlock()
	return t
}

// subprocess is a collection of threads being traced.
type subprocess struct {
	platform.NoAddressSpaceIO

	// requests is used to signal creation of new threads.
	requests chan chan *thread

	// sysemuThreads are reserved for emulation.
	sysemuThreads threadPool

	// syscallThreads are reserved for syscalls (except clone, which is
	// handled in the dedicated goroutine corresponding to requests above).
	syscallThreads threadPool

	// mu protects the following fields.
	mu sync.Mutex

	// contexts is the set of contexts for which it's possible that
	// context.lastFaultSP == this subprocess.
	contexts map[*context]struct{}
}

// newSubprocess returns a useable subprocess.
//
// This will either be a newly created subprocess, or one from the global pool.
// The create function will be called in the latter case, which is guaranteed
// to happen with the runtime thread locked.
func newSubprocess(create func() (*thread, error)) (*subprocess, error) {
	// See Release.
	globalPool.mu.Lock()
	if len(globalPool.available) > 0 {
		sp := globalPool.available[len(globalPool.available)-1]
		globalPool.available = globalPool.available[:len(globalPool.available)-1]
		globalPool.mu.Unlock()
		return sp, nil
	}
	globalPool.mu.Unlock()

	// The following goroutine is responsible for creating the first traced
	// thread, and responding to requests to make additional threads in the
	// traced process. The process will be killed and reaped when the
	// request channel is closed, which happens in Release below.
	errChan := make(chan error)
	requests := make(chan chan *thread)
	go func() { // S/R-SAFE: Platform-related.
		runtime.LockOSThread()
		defer runtime.UnlockOSThread()

		// Initialize the first thread.
		firstThread, err := create()
		if err != nil {
			errChan <- err
			return
		}

		// Ready to handle requests.
		errChan <- nil

		// Wait for requests to create threads.
		for r := range requests {
			t, err := firstThread.clone()
			if err != nil {
				// Should not happen: not recoverable.
				panic(fmt.Sprintf("error initializing first thread: %v", err))
			}

			// Since the new thread was created with
			// clone(CLONE_PTRACE), it will begin execution with
			// SIGSTOP pending and with this thread as its tracer.
			// (Hopefully nobody tgkilled it with a signal <
			// SIGSTOP before the SIGSTOP was delivered, in which
			// case that signal would be delivered before SIGSTOP.)
			if sig := t.wait(stopped); sig != syscall.SIGSTOP {
				panic(fmt.Sprintf("error waiting for new clone: expected SIGSTOP, got %v", sig))
			}

			// Detach the thread.
			t.detach()

			// Return the thread.
			r <- t
		}

		// Requests should never be closed.
		panic("unreachable")
	}()

	// Wait until error or readiness.
	if err := <-errChan; err != nil {
		return nil, err
	}

	// Ready.
	sp := &subprocess{
		requests: requests,
		sysemuThreads: threadPool{
			threads: make(map[int32]*thread),
		},
		syscallThreads: threadPool{
			threads: make(map[int32]*thread),
		},
		contexts: make(map[*context]struct{}),
	}

	sp.unmap()
	return sp, nil
}

// unmap unmaps non-stub regions of the process.
//
// This will panic on failure (which should never happen).
func (s *subprocess) unmap() {
	s.Unmap(0, uint64(stubStart))
	if maximumUserAddress != stubEnd {
		s.Unmap(usermem.Addr(stubEnd), uint64(maximumUserAddress-stubEnd))
	}
}

// Release kills the subprocess.
//
// Just kidding! We can't safely co-ordinate the detaching of all the
// tracees (since the tracers are random runtime threads, and the process
// won't exit until tracers have been notifier).
//
// Therefore we simply unmap everything in the subprocess and return it to the
// globalPool. This has the added benefit of reducing creation time for new
// subprocesses.
func (s *subprocess) Release() {
	go func() { // S/R-SAFE: Platform.
		s.unmap()
		globalPool.mu.Lock()
		globalPool.available = append(globalPool.available, s)
		globalPool.mu.Unlock()
	}()
}

// newThread creates a new traced thread.
//
// Precondition: the OS thread must be locked.
func (s *subprocess) newThread() *thread {
	// Ask the first thread to create a new one.
	r := make(chan *thread)
	s.requests <- r
	t := <-r

	// Attach the subprocess to this one.
	t.attach()

	// Return the new thread, which is now bound.
	return t
}

// attach attachs to the thread.
func (t *thread) attach() {
	if _, _, errno := syscall.RawSyscall(syscall.SYS_PTRACE, syscall.PTRACE_ATTACH, uintptr(t.tid), 0); errno != 0 {
		panic(fmt.Sprintf("unable to attach: %v", errno))
	}

	// PTRACE_ATTACH sends SIGSTOP, and wakes the tracee if it was already
	// stopped from the SIGSTOP queued by CLONE_PTRACE (see inner loop of
	// newSubprocess), so we always expect to see signal-delivery-stop with
	// SIGSTOP.
	if sig := t.wait(stopped); sig != syscall.SIGSTOP {
		panic(fmt.Sprintf("wait failed: expected SIGSTOP, got %v", sig))
	}

	// Initialize options.
	t.init()

	// Grab registers.
	//
	// Note that we adjust the current register RIP value to be just before
	// the current system call executed. This depends on the definition of
	// the stub itself.
	if err := t.getRegs(&t.initRegs); err != nil {
		panic(fmt.Sprintf("ptrace get regs failed: %v", err))
	}
	t.initRegs.Rip -= initRegsRipAdjustment
}

// detach detachs from the thread.
//
// Because the SIGSTOP is not supressed, the thread will enter group-stop.
func (t *thread) detach() {
	if _, _, errno := syscall.RawSyscall6(syscall.SYS_PTRACE, syscall.PTRACE_DETACH, uintptr(t.tid), 0, uintptr(syscall.SIGSTOP), 0, 0); errno != 0 {
		panic(fmt.Sprintf("can't detach new clone: %v", errno))
	}
}

// waitOutcome is used for wait below.
type waitOutcome int

const (
	// stopped indicates that the process was stopped.
	stopped waitOutcome = iota

	// killed indicates that the process was killed.
	killed
)

// wait waits for a stop event.
//
// Precondition: outcome is a valid waitOutcome.
func (t *thread) wait(outcome waitOutcome) syscall.Signal {
	var status syscall.WaitStatus

	for {
		r, err := syscall.Wait4(int(t.tid), &status, syscall.WALL|syscall.WUNTRACED, nil)
		if err == syscall.EINTR || err == syscall.EAGAIN {
			// Wait was interrupted; wait again.
			continue
		} else if err != nil {
			panic(fmt.Sprintf("ptrace wait failed: %v", err))
		}
		if int(r) != int(t.tid) {
			panic(fmt.Sprintf("ptrace wait returned %v, expected %v", r, t.tid))
		}
		switch outcome {
		case stopped:
			if !status.Stopped() {
				panic(fmt.Sprintf("ptrace status unexpected: got %v, wanted stopped", status))
			}
			stopSig := status.StopSignal()
			if stopSig == 0 {
				continue // Spurious stop.
			}
			if stopSig == syscall.SIGTRAP {
				// Re-encode the trap cause the way it's expected.
				return stopSig | syscall.Signal(status.TrapCause()<<8)
			}
			// Not a trap signal.
			return stopSig
		case killed:
			if !status.Exited() && !status.Signaled() {
				panic(fmt.Sprintf("ptrace status unexpected: got %v, wanted exited", status))
			}
			return syscall.Signal(status.ExitStatus())
		default:
			// Should not happen.
			panic(fmt.Sprintf("unknown outcome: %v", outcome))
		}
	}
}

// destroy kills the thread.
//
// Note that this should not be used in the general case; the death of threads
// will typically cause the death of the parent. This is a utility method for
// manually created threads.
func (t *thread) destroy() {
	t.detach()
	syscall.Tgkill(int(t.tgid), int(t.tid), syscall.Signal(syscall.SIGKILL))
	t.wait(killed)
}

// init initializes trace options.
func (t *thread) init() {
	// Set our TRACESYSGOOD option to differeniate real SIGTRAP.
	_, _, errno := syscall.RawSyscall6(
		syscall.SYS_PTRACE,
		syscall.PTRACE_SETOPTIONS,
		uintptr(t.tid),
		0,
		syscall.PTRACE_O_TRACESYSGOOD,
		0, 0)
	if errno != 0 {
		panic(fmt.Sprintf("ptrace set options failed: %v", errno))
	}
}

// syscall executes a system call cycle in the traced context.
//
// This is _not_ for use by application system calls, rather it is for use when
// a system call must be injected into the remote context (e.g. mmap, munmap).
// Note that clones are handled separately.
func (t *thread) syscall(regs *syscall.PtraceRegs) (uintptr, error) {
	// Set registers.
	if err := t.setRegs(regs); err != nil {
		panic(fmt.Sprintf("ptrace set regs failed: %v", err))
	}

	for {
		// Execute the syscall instruction.
		if _, _, errno := syscall.RawSyscall(syscall.SYS_PTRACE, syscall.PTRACE_SYSCALL, uintptr(t.tid), 0); errno != 0 {
			panic(fmt.Sprintf("ptrace syscall-enter failed: %v", errno))
		}

		sig := t.wait(stopped)
		if sig == (syscallEvent | syscall.SIGTRAP) {
			// Reached syscall-enter-stop.
			break
		} else {
			// Some other signal caused a thread stop; ignore.
			continue
		}
	}

	// Complete the actual system call.
	if _, _, errno := syscall.RawSyscall(syscall.SYS_PTRACE, syscall.PTRACE_SYSCALL, uintptr(t.tid), 0); errno != 0 {
		panic(fmt.Sprintf("ptrace syscall-enter failed: %v", errno))
	}

	// Wait for syscall-exit-stop. "[Signal-delivery-stop] never happens
	// between syscall-enter-stop and syscall-exit-stop; it happens *after*
	// syscall-exit-stop.)" - ptrace(2), "Syscall-stops"
	if sig := t.wait(stopped); sig != (syscallEvent | syscall.SIGTRAP) {
		panic(fmt.Sprintf("wait failed: expected SIGTRAP, got %v [%d]", sig, sig))
	}

	// Grab registers.
	if err := t.getRegs(regs); err != nil {
		panic(fmt.Sprintf("ptrace get regs failed: %v", err))
	}

	return syscallReturnValue(regs)
}

// syscallIgnoreInterrupt ignores interrupts on the system call thread and
// restarts the syscall if the kernel indicates that should happen.
func (t *thread) syscallIgnoreInterrupt(
	initRegs *syscall.PtraceRegs,
	sysno uintptr,
	args ...arch.SyscallArgument) (uintptr, error) {
	for {
		regs := createSyscallRegs(initRegs, sysno, args...)
		rval, err := t.syscall(&regs)
		switch err {
		case ERESTARTSYS:
			continue
		case ERESTARTNOINTR:
			continue
		case ERESTARTNOHAND:
			continue
		default:
			return rval, err
		}
	}
}

// NotifyInterrupt implements interrupt.Receiver.NotifyInterrupt.
func (t *thread) NotifyInterrupt() {
	syscall.Tgkill(int(t.tgid), int(t.tid), syscall.Signal(platform.SignalInterrupt))
}

// switchToApp is called from the main SwitchToApp entrypoint.
//
// This function returns true on a system call, false on a signal.
func (s *subprocess) switchToApp(c *context, ac arch.Context) bool {
	// Lock the thread for ptrace operations.
	runtime.LockOSThread()
	defer runtime.UnlockOSThread()

	// Extract floating point state.
	fpState := ac.FloatingPointData()
	fpLen, _ := ac.FeatureSet().ExtendedStateSize()
	useXsave := ac.FeatureSet().UseXsave()

	// Grab our thread from the pool.
	currentTID := int32(procid.Current())
	t := s.sysemuThreads.lookupOrCreate(currentTID, s.newThread)

	// Reset necessary registers.
	regs := &ac.StateData().Regs
	t.resetSysemuRegs(regs)

	// Check for interrupts, and ensure that future interrupts will signal t.
	if !c.interrupt.Enable(t) {
		// Pending interrupt; simulate.
		c.signalInfo = arch.SignalInfo{Signo: int32(platform.SignalInterrupt)}
		return false
	}
	defer c.interrupt.Disable()

	// Ensure that the CPU set is bound appropriately; this makes the
	// emulation below several times faster, presumably by avoiding
	// interprocessor wakeups and by simplifying the schedule.
	t.bind()

	// Set registers.
	if err := t.setRegs(regs); err != nil {
		panic(fmt.Sprintf("ptrace set regs (%+v) failed: %v", regs, err))
	}
	if err := t.setFPRegs(fpState, uint64(fpLen), useXsave); err != nil {
		panic(fmt.Sprintf("ptrace set fpregs (%+v) failed: %v", fpState, err))
	}

	for {
		// Start running until the next system call.
		if isSingleStepping(regs) {
			if _, _, errno := syscall.RawSyscall(
				syscall.SYS_PTRACE,
				syscall.PTRACE_SYSEMU_SINGLESTEP,
				uintptr(t.tid), 0); errno != 0 {
				panic(fmt.Sprintf("ptrace sysemu failed: %v", errno))
			}
		} else {
			if _, _, errno := syscall.RawSyscall(
				syscall.SYS_PTRACE,
				syscall.PTRACE_SYSEMU,
				uintptr(t.tid), 0); errno != 0 {
				panic(fmt.Sprintf("ptrace sysemu failed: %v", errno))
			}
		}

		// Wait for the syscall-enter stop.
		sig := t.wait(stopped)

		// Refresh all registers.
		if err := t.getRegs(regs); err != nil {
			panic(fmt.Sprintf("ptrace get regs failed: %v", err))
		}
		if err := t.getFPRegs(fpState, uint64(fpLen), useXsave); err != nil {
			panic(fmt.Sprintf("ptrace get fpregs failed: %v", err))
		}

		// Is it a system call?
		if sig == (syscallEvent | syscall.SIGTRAP) {
			// Ensure registers are sane.
			updateSyscallRegs(regs)
			return true
		} else if sig == syscall.SIGSTOP {
			// SIGSTOP was delivered to another thread in the same thread
			// group, which initiated another group stop. Just ignore it.
			continue
		}

		// Grab signal information.
		if err := t.getSignalInfo(&c.signalInfo); err != nil {
			// Should never happen.
			panic(fmt.Sprintf("ptrace get signal info failed: %v", err))
		}

		// We have a signal. We verify however, that the signal was
		// either delivered from the kernel or from this process. We
		// don't respect other signals.
		if c.signalInfo.Code > 0 {
			// The signal was generated by the kernel. We inspect
			// the signal information, and may patch it in order to
			// faciliate vsyscall emulation. See patchSignalInfo.
			patchSignalInfo(regs, &c.signalInfo)
			return false
		} else if c.signalInfo.Code <= 0 && c.signalInfo.Pid() == int32(os.Getpid()) {
			// The signal was generated by this process. That means
			// that it was an interrupt or something else that we
			// should bail for. Note that we ignore signals
			// generated by other processes.
			return false
		}
	}
}

// syscall executes the given system call without handling interruptions.
func (s *subprocess) syscall(sysno uintptr, args ...arch.SyscallArgument) (uintptr, error) {
	// Grab a thread.
	runtime.LockOSThread()
	defer runtime.UnlockOSThread()
	currentTID := int32(procid.Current())
	t := s.syscallThreads.lookupOrCreate(currentTID, s.newThread)

	return t.syscallIgnoreInterrupt(&t.initRegs, sysno, args...)
}

// MapFile implements platform.AddressSpace.MapFile.
func (s *subprocess) MapFile(addr usermem.Addr, f platform.File, fr platform.FileRange, at usermem.AccessType, precommit bool) error {
	var flags int
	if precommit {
		flags |= syscall.MAP_POPULATE
	}
	_, err := s.syscall(
		syscall.SYS_MMAP,
		arch.SyscallArgument{Value: uintptr(addr)},
		arch.SyscallArgument{Value: uintptr(fr.Length())},
		arch.SyscallArgument{Value: uintptr(at.Prot())},
		arch.SyscallArgument{Value: uintptr(flags | syscall.MAP_SHARED | syscall.MAP_FIXED)},
		arch.SyscallArgument{Value: uintptr(f.FD())},
		arch.SyscallArgument{Value: uintptr(fr.Start)})
	return err
}

// Unmap implements platform.AddressSpace.Unmap.
func (s *subprocess) Unmap(addr usermem.Addr, length uint64) {
	ar, ok := addr.ToRange(length)
	if !ok {
		panic(fmt.Sprintf("addr %#x + length %#x overflows", addr, length))
	}
	s.mu.Lock()
	for c := range s.contexts {
		c.mu.Lock()
		if c.lastFaultSP == s && ar.Contains(c.lastFaultAddr) {
			// Forget the last fault so that if c faults again, the fault isn't
			// incorrectly reported as a write fault. If this is being called
			// due to munmap() of the corresponding vma, handling of the second
			// fault will fail anyway.
			c.lastFaultSP = nil
			delete(s.contexts, c)
		}
		c.mu.Unlock()
	}
	s.mu.Unlock()
	_, err := s.syscall(
		syscall.SYS_MUNMAP,
		arch.SyscallArgument{Value: uintptr(addr)},
		arch.SyscallArgument{Value: uintptr(length)})
	if err != nil {
		// We never expect this to happen.
		panic(fmt.Sprintf("munmap(%x, %x)) failed: %v", addr, length, err))
	}
}