1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
|
// Copyright 2019 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// +build arm64
package kvm
import (
"fmt"
"reflect"
"sync/atomic"
"syscall"
"unsafe"
"gvisor.dev/gvisor/pkg/ring0"
"gvisor.dev/gvisor/pkg/ring0/pagetables"
"gvisor.dev/gvisor/pkg/sentry/arch"
"gvisor.dev/gvisor/pkg/sentry/platform"
"gvisor.dev/gvisor/pkg/usermem"
)
type kvmVcpuInit struct {
target uint32
features [7]uint32
}
var vcpuInit kvmVcpuInit
// initArchState initializes architecture-specific state.
func (m *machine) initArchState() error {
if _, _, errno := syscall.RawSyscall(
syscall.SYS_IOCTL,
uintptr(m.fd),
_KVM_ARM_PREFERRED_TARGET,
uintptr(unsafe.Pointer(&vcpuInit))); errno != 0 {
panic(fmt.Sprintf("error setting KVM_ARM_PREFERRED_TARGET failed: %v", errno))
}
return nil
}
// initArchState initializes architecture-specific state.
func (c *vCPU) initArchState() error {
var (
reg kvmOneReg
data uint64
regGet kvmOneReg
dataGet uint64
)
reg.addr = uint64(reflect.ValueOf(&data).Pointer())
regGet.addr = uint64(reflect.ValueOf(&dataGet).Pointer())
vcpuInit.features[0] |= (1 << _KVM_ARM_VCPU_PSCI_0_2)
if _, _, errno := syscall.RawSyscall(
syscall.SYS_IOCTL,
uintptr(c.fd),
_KVM_ARM_VCPU_INIT,
uintptr(unsafe.Pointer(&vcpuInit))); errno != 0 {
panic(fmt.Sprintf("error setting KVM_ARM_VCPU_INIT failed: %v", errno))
}
// tcr_el1
data = _TCR_TXSZ_VA48 | _TCR_CACHE_FLAGS | _TCR_SHARED | _TCR_TG_FLAGS | _TCR_ASID16 | _TCR_IPS_40BITS
reg.id = _KVM_ARM64_REGS_TCR_EL1
if err := c.setOneRegister(®); err != nil {
return err
}
// mair_el1
data = _MT_EL1_INIT
reg.id = _KVM_ARM64_REGS_MAIR_EL1
if err := c.setOneRegister(®); err != nil {
return err
}
// ttbr0_el1
data = c.machine.kernel.PageTables.TTBR0_EL1(false, 0)
reg.id = _KVM_ARM64_REGS_TTBR0_EL1
if err := c.setOneRegister(®); err != nil {
return err
}
c.SetTtbr0Kvm(uintptr(data))
// ttbr1_el1
data = c.machine.kernel.PageTables.TTBR1_EL1(false, 0)
reg.id = _KVM_ARM64_REGS_TTBR1_EL1
if err := c.setOneRegister(®); err != nil {
return err
}
// sp_el1
data = c.CPU.StackTop()
reg.id = _KVM_ARM64_REGS_SP_EL1
if err := c.setOneRegister(®); err != nil {
return err
}
// pc
reg.id = _KVM_ARM64_REGS_PC
data = uint64(reflect.ValueOf(ring0.Start).Pointer())
if err := c.setOneRegister(®); err != nil {
return err
}
// r8
reg.id = _KVM_ARM64_REGS_R8
data = uint64(reflect.ValueOf(&c.CPU).Pointer())
if err := c.setOneRegister(®); err != nil {
return err
}
// vbar_el1
reg.id = _KVM_ARM64_REGS_VBAR_EL1
fromLocation := reflect.ValueOf(ring0.Vectors).Pointer()
offset := fromLocation & (1<<11 - 1)
if offset != 0 {
offset = 1<<11 - offset
}
toLocation := fromLocation + offset
data = uint64(ring0.KernelStartAddress | toLocation)
if err := c.setOneRegister(®); err != nil {
return err
}
// Use the address of the exception vector table as
// the MMIO address base.
arm64HypercallMMIOBase = toLocation
// Initialize the PCID database.
if hasGuestPCID {
// Note that NewPCIDs may return a nil table here, in which
// case we simply don't use PCID support (see below). In
// practice, this should not happen, however.
c.PCIDs = pagetables.NewPCIDs(fixedKernelPCID+1, poolPCIDs)
}
c.floatingPointState = arch.NewFloatingPointData()
return c.setSystemTime()
}
// setTSC sets the counter Virtual Offset.
func (c *vCPU) setTSC(value uint64) error {
var (
reg kvmOneReg
data uint64
)
reg.addr = uint64(reflect.ValueOf(&data).Pointer())
reg.id = _KVM_ARM64_REGS_TIMER_CNT
data = uint64(value)
if err := c.setOneRegister(®); err != nil {
return err
}
return nil
}
// setSystemTime sets the vCPU to the system time.
func (c *vCPU) setSystemTime() error {
return c.setSystemTimeLegacy()
}
//go:nosplit
func (c *vCPU) loadSegments(tid uint64) {
// TODO(gvisor.dev/issue/1238): TLS is not supported.
// Get TLS from tpidr_el0.
atomic.StoreUint64(&c.tid, tid)
}
func (c *vCPU) setOneRegister(reg *kvmOneReg) error {
if _, _, errno := syscall.RawSyscall(
syscall.SYS_IOCTL,
uintptr(c.fd),
_KVM_SET_ONE_REG,
uintptr(unsafe.Pointer(reg))); errno != 0 {
return fmt.Errorf("error setting one register: %v", errno)
}
return nil
}
func (c *vCPU) getOneRegister(reg *kvmOneReg) error {
if _, _, errno := syscall.RawSyscall(
syscall.SYS_IOCTL,
uintptr(c.fd),
_KVM_GET_ONE_REG,
uintptr(unsafe.Pointer(reg))); errno != 0 {
return fmt.Errorf("error setting one register: %v", errno)
}
return nil
}
// SwitchToUser unpacks architectural-details.
func (c *vCPU) SwitchToUser(switchOpts ring0.SwitchOpts, info *arch.SignalInfo) (usermem.AccessType, error) {
// Check for canonical addresses.
if regs := switchOpts.Registers; !ring0.IsCanonical(regs.Pc) {
return nonCanonical(regs.Pc, int32(syscall.SIGSEGV), info)
} else if !ring0.IsCanonical(regs.Sp) {
return nonCanonical(regs.Sp, int32(syscall.SIGSEGV), info)
}
// Assign PCIDs.
if c.PCIDs != nil {
var requireFlushPCID bool // Force a flush?
switchOpts.UserASID, requireFlushPCID = c.PCIDs.Assign(switchOpts.PageTables)
switchOpts.Flush = switchOpts.Flush || requireFlushPCID
}
var vector ring0.Vector
ttbr0App := switchOpts.PageTables.TTBR0_EL1(false, 0)
c.SetTtbr0App(uintptr(ttbr0App))
// Full context-switch supporting for Arm64.
// The Arm64 user-mode execution state consists of:
// x0-x30
// PC, SP, PSTATE
// V0-V31: 32 128-bit registers for floating point, and simd
// FPSR, FPCR
// TPIDR_EL0, used for TLS
appRegs := switchOpts.Registers
c.SetAppAddr(ring0.KernelStartAddress | uintptr(unsafe.Pointer(appRegs)))
entersyscall()
bluepill(c)
vector = c.CPU.SwitchToUser(switchOpts)
exitsyscall()
switch vector {
case ring0.Syscall:
// Fast path: system call executed.
return usermem.NoAccess, nil
case ring0.PageFault:
return c.fault(int32(syscall.SIGSEGV), info)
case ring0.El0ErrNMI:
return c.fault(int32(syscall.SIGBUS), info)
case ring0.Vector(bounce): // ring0.VirtualizationException.
return usermem.NoAccess, platform.ErrContextInterrupt
case ring0.El0SyncUndef:
return c.fault(int32(syscall.SIGILL), info)
case ring0.El0SyncDbg:
*info = arch.SignalInfo{
Signo: int32(syscall.SIGTRAP),
Code: 1, // TRAP_BRKPT (breakpoint).
}
info.SetAddr(switchOpts.Registers.Pc) // Include address.
return usermem.AccessType{}, platform.ErrContextSignal
case ring0.El0SyncSpPc:
*info = arch.SignalInfo{
Signo: int32(syscall.SIGBUS),
Code: 2, // BUS_ADRERR (physical address does not exist).
}
return usermem.NoAccess, platform.ErrContextSignal
case ring0.El0SyncSys,
ring0.El0SyncWfx:
return usermem.NoAccess, nil // skip for now.
default:
panic(fmt.Sprintf("unexpected vector: 0x%x", vector))
}
}
|