summaryrefslogtreecommitdiffhomepage
path: root/pkg/sentry/platform/kvm/machine_arm64.go
blob: 3b1f20219dcbc9dac6e882234d93a62dd4fe584f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
// Copyright 2019 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

// +build arm64

package kvm

import (
	"gvisor.dev/gvisor/pkg/sentry/arch"
	"gvisor.dev/gvisor/pkg/sentry/platform"
	"gvisor.dev/gvisor/pkg/sentry/platform/ring0/pagetables"
	"gvisor.dev/gvisor/pkg/sentry/usermem"
)

type vCPUArchState struct {
	// PCIDs is the set of PCIDs for this vCPU.
	//
	// This starts above fixedKernelPCID.
	PCIDs *pagetables.PCIDs
}

const (
	// fixedKernelPCID is a fixed kernel PCID used for the kernel page
	// tables. We must start allocating user PCIDs above this in order to
	// avoid any conflict (see below).
	fixedKernelPCID = 1

	// poolPCIDs is the number of PCIDs to record in the database. As this
	// grows, assignment can take longer, since it is a simple linear scan.
	// Beyond a relatively small number, there are likely few perform
	// benefits, since the TLB has likely long since lost any translations
	// from more than a few PCIDs past.
	poolPCIDs = 8
)

// Get all read-only physicalRegions.
func rdonlyRegionsForSetMem() (phyRegions []physicalRegion) {
	var rdonlyRegions []region

	applyVirtualRegions(func(vr virtualRegion) {
		if excludeVirtualRegion(vr) {
			return
		}

		if !vr.accessType.Write && vr.accessType.Read {
			rdonlyRegions = append(rdonlyRegions, vr.region)
		}
	})

	for _, r := range rdonlyRegions {
		physical, _, ok := translateToPhysical(r.virtual)
		if !ok {
			continue
		}

		phyRegions = append(phyRegions, physicalRegion{
			region: region{
				virtual: r.virtual,
				length:  r.length,
			},
			physical: physical,
		})
	}

	return phyRegions
}

// Get all available physicalRegions.
func availableRegionsForSetMem() (phyRegions []physicalRegion) {
	var excludeRegions []region
	applyVirtualRegions(func(vr virtualRegion) {
		if !vr.accessType.Write {
			excludeRegions = append(excludeRegions, vr.region)
		}
	})

	phyRegions = computePhysicalRegions(excludeRegions)

	return phyRegions
}

// dropPageTables drops cached page table entries.
func (m *machine) dropPageTables(pt *pagetables.PageTables) {
	m.mu.Lock()
	defer m.mu.Unlock()

	// Clear from all PCIDs.
	for _, c := range m.vCPUs {
		if c.PCIDs != nil {
			c.PCIDs.Drop(pt)
		}
	}
}

// nonCanonical generates a canonical address return.
//
//go:nosplit
func nonCanonical(addr uint64, signal int32, info *arch.SignalInfo) (usermem.AccessType, error) {
	*info = arch.SignalInfo{
		Signo: signal,
		Code:  arch.SignalInfoKernel,
	}
	info.SetAddr(addr) // Include address.
	return usermem.NoAccess, platform.ErrContextSignal
}

// fault generates an appropriate fault return.
//
//go:nosplit
func (c *vCPU) fault(signal int32, info *arch.SignalInfo) (usermem.AccessType, error) {
	faultAddr := c.GetFaultAddr()
	code, user := c.ErrorCode()

	// Reset the pointed SignalInfo.
	*info = arch.SignalInfo{Signo: signal}
	info.SetAddr(uint64(faultAddr))

	read := true
	write := false
	execute := true

	ret := code & _ESR_ELx_FSC
	switch ret {
	case _ESR_SEGV_MAPERR_L0, _ESR_SEGV_MAPERR_L1, _ESR_SEGV_MAPERR_L2, _ESR_SEGV_MAPERR_L3:
		info.Code = 1 //SEGV_MAPERR
		read = false
		write = true
		execute = false
	case _ESR_SEGV_ACCERR_L1, _ESR_SEGV_ACCERR_L2, _ESR_SEGV_ACCERR_L3, _ESR_SEGV_PEMERR_L1, _ESR_SEGV_PEMERR_L2, _ESR_SEGV_PEMERR_L3:
		info.Code = 2 // SEGV_ACCERR.
		read = true
		write = false
		execute = false
	default:
		info.Code = 2
	}

	if !user {
		read = true
		write = false
		execute = true

	}
	accessType := usermem.AccessType{
		Read:    read,
		Write:   write,
		Execute: execute,
	}

	return accessType, platform.ErrContextSignal
}

// retryInGuest runs the given function in guest mode.
//
// If the function does not complete in guest mode (due to execution of a
// system call due to a GC stall, for example), then it will be retried. The
// given function must be idempotent as a result of the retry mechanism.
func (m *machine) retryInGuest(fn func()) {
	c := m.Get()
	defer m.Put(c)
	for {
		c.ClearErrorCode() // See below.
		bluepill(c)        // Force guest mode.
		fn()               // Execute the given function.
		_, user := c.ErrorCode()
		if user {
			// If user is set, then we haven't bailed back to host
			// mode via a kernel exception or system call. We
			// consider the full function to have executed in guest
			// mode and we can return.
			break
		}
	}
}