1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// +build amd64
package kvm
import (
"fmt"
"sync/atomic"
"syscall"
"unsafe"
"gvisor.dev/gvisor/pkg/abi/linux"
"gvisor.dev/gvisor/pkg/sentry/time"
)
// loadSegments copies the current segments.
//
// This may be called from within the signal context and throws on error.
//
//go:nosplit
func (c *vCPU) loadSegments(tid uint64) {
if _, _, errno := syscall.RawSyscall(
syscall.SYS_ARCH_PRCTL,
linux.ARCH_GET_FS,
uintptr(unsafe.Pointer(&c.CPU.Registers().Fs_base)),
0); errno != 0 {
throw("getting FS segment")
}
if _, _, errno := syscall.RawSyscall(
syscall.SYS_ARCH_PRCTL,
linux.ARCH_GET_GS,
uintptr(unsafe.Pointer(&c.CPU.Registers().Gs_base)),
0); errno != 0 {
throw("getting GS segment")
}
atomic.StoreUint64(&c.tid, tid)
}
// setCPUID sets the CPUID to be used by the guest.
func (c *vCPU) setCPUID() error {
if _, _, errno := syscall.RawSyscall(
syscall.SYS_IOCTL,
uintptr(c.fd),
_KVM_SET_CPUID2,
uintptr(unsafe.Pointer(&cpuidSupported))); errno != 0 {
return fmt.Errorf("error setting CPUID: %v", errno)
}
return nil
}
// setSystemTime sets the TSC for the vCPU.
//
// This has to make the call many times in order to minimize the intrinsic
// error in the offset. Unfortunately KVM does not expose a relative offset via
// the API, so this is an approximation. We do this via an iterative algorithm.
// This has the advantage that it can generally deal with highly variable
// system call times and should converge on the correct offset.
func (c *vCPU) setSystemTime() error {
const (
_MSR_IA32_TSC = 0x00000010
calibrateTries = 10
)
registers := modelControlRegisters{
nmsrs: 1,
}
registers.entries[0] = modelControlRegister{
index: _MSR_IA32_TSC,
}
target := uint64(^uint32(0))
for done := 0; done < calibrateTries; {
start := uint64(time.Rdtsc())
registers.entries[0].data = start + target
if _, _, errno := syscall.RawSyscall(
syscall.SYS_IOCTL,
uintptr(c.fd),
_KVM_SET_MSRS,
uintptr(unsafe.Pointer(®isters))); errno != 0 {
return fmt.Errorf("error setting system time: %v", errno)
}
// See if this is our new minimum call time. Note that this
// serves two functions: one, we make sure that we are
// accurately predicting the offset we need to set. Second, we
// don't want to do the final set on a slow call, which could
// produce a really bad result. So we only count attempts
// within +/- 6.25% of our minimum as an attempt.
end := uint64(time.Rdtsc())
if end < start {
continue // Totally bogus.
}
half := (end - start) / 2
if half < target {
target = half
}
if (half - target) < target/8 {
done++
}
}
return nil
}
// setSignalMask sets the vCPU signal mask.
//
// This must be called prior to running the vCPU.
func (c *vCPU) setSignalMask() error {
// The layout of this structure implies that it will not necessarily be
// the same layout chosen by the Go compiler. It gets fudged here.
var data struct {
length uint32
mask1 uint32
mask2 uint32
_ uint32
}
data.length = 8 // Fixed sigset size.
data.mask1 = ^uint32(bounceSignalMask & 0xffffffff)
data.mask2 = ^uint32(bounceSignalMask >> 32)
if _, _, errno := syscall.RawSyscall(
syscall.SYS_IOCTL,
uintptr(c.fd),
_KVM_SET_SIGNAL_MASK,
uintptr(unsafe.Pointer(&data))); errno != 0 {
return fmt.Errorf("error setting signal mask: %v", errno)
}
return nil
}
// setUserRegisters sets user registers in the vCPU.
func (c *vCPU) setUserRegisters(uregs *userRegs) error {
if _, _, errno := syscall.RawSyscall(
syscall.SYS_IOCTL,
uintptr(c.fd),
_KVM_SET_REGS,
uintptr(unsafe.Pointer(uregs))); errno != 0 {
return fmt.Errorf("error setting user registers: %v", errno)
}
return nil
}
// getUserRegisters reloads user registers in the vCPU.
//
// This is safe to call from a nosplit context.
//
//go:nosplit
func (c *vCPU) getUserRegisters(uregs *userRegs) syscall.Errno {
if _, _, errno := syscall.RawSyscall(
syscall.SYS_IOCTL,
uintptr(c.fd),
_KVM_GET_REGS,
uintptr(unsafe.Pointer(uregs))); errno != 0 {
return errno
}
return 0
}
// setSystemRegisters sets system registers.
func (c *vCPU) setSystemRegisters(sregs *systemRegs) error {
if _, _, errno := syscall.RawSyscall(
syscall.SYS_IOCTL,
uintptr(c.fd),
_KVM_SET_SREGS,
uintptr(unsafe.Pointer(sregs))); errno != 0 {
return fmt.Errorf("error setting system registers: %v", errno)
}
return nil
}
|