1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// +build amd64
package kvm
import (
"fmt"
"reflect"
"runtime/debug"
"syscall"
"gvisor.dev/gvisor/pkg/sentry/arch"
"gvisor.dev/gvisor/pkg/sentry/platform"
"gvisor.dev/gvisor/pkg/sentry/platform/ring0"
"gvisor.dev/gvisor/pkg/sentry/platform/ring0/pagetables"
"gvisor.dev/gvisor/pkg/sentry/usermem"
)
// initArchState initializes architecture-specific state.
func (m *machine) initArchState() error {
// Set the legacy TSS address. This address is covered by the reserved
// range (up to 4GB). In fact, this is a main reason it exists.
if _, _, errno := syscall.RawSyscall(
syscall.SYS_IOCTL,
uintptr(m.fd),
_KVM_SET_TSS_ADDR,
uintptr(reservedMemory-(3*usermem.PageSize))); errno != 0 {
return errno
}
// Enable CPUID faulting, if possible. Note that this also serves as a
// basic platform sanity tests, since we will enter guest mode for the
// first time here. The recovery is necessary, since if we fail to read
// the platform info register, we will retry to host mode and
// ultimately need to handle a segmentation fault.
old := debug.SetPanicOnFault(true)
defer func() {
recover()
debug.SetPanicOnFault(old)
}()
m.retryInGuest(func() {
ring0.SetCPUIDFaulting(true)
})
return nil
}
type vCPUArchState struct {
// PCIDs is the set of PCIDs for this vCPU.
//
// This starts above fixedKernelPCID.
PCIDs *pagetables.PCIDs
// floatingPointState is the floating point state buffer used in guest
// to host transitions. See usage in bluepill_amd64.go.
floatingPointState *arch.FloatingPointData
}
const (
// fixedKernelPCID is a fixed kernel PCID used for the kernel page
// tables. We must start allocating user PCIDs above this in order to
// avoid any conflict (see below).
fixedKernelPCID = 1
// poolPCIDs is the number of PCIDs to record in the database. As this
// grows, assignment can take longer, since it is a simple linear scan.
// Beyond a relatively small number, there are likely few perform
// benefits, since the TLB has likely long since lost any translations
// from more than a few PCIDs past.
poolPCIDs = 8
)
// dropPageTables drops cached page table entries.
func (m *machine) dropPageTables(pt *pagetables.PageTables) {
m.mu.Lock()
defer m.mu.Unlock()
// Clear from all PCIDs.
for _, c := range m.vCPUs {
c.PCIDs.Drop(pt)
}
}
// initArchState initializes architecture-specific state.
func (c *vCPU) initArchState() error {
var (
kernelSystemRegs systemRegs
kernelUserRegs userRegs
)
// Set base control registers.
kernelSystemRegs.CR0 = c.CR0()
kernelSystemRegs.CR4 = c.CR4()
kernelSystemRegs.EFER = c.EFER()
// Set the IDT & GDT in the registers.
kernelSystemRegs.IDT.base, kernelSystemRegs.IDT.limit = c.IDT()
kernelSystemRegs.GDT.base, kernelSystemRegs.GDT.limit = c.GDT()
kernelSystemRegs.CS.Load(&ring0.KernelCodeSegment, ring0.Kcode)
kernelSystemRegs.DS.Load(&ring0.UserDataSegment, ring0.Udata)
kernelSystemRegs.ES.Load(&ring0.UserDataSegment, ring0.Udata)
kernelSystemRegs.SS.Load(&ring0.KernelDataSegment, ring0.Kdata)
kernelSystemRegs.FS.Load(&ring0.UserDataSegment, ring0.Udata)
kernelSystemRegs.GS.Load(&ring0.UserDataSegment, ring0.Udata)
tssBase, tssLimit, tss := c.TSS()
kernelSystemRegs.TR.Load(tss, ring0.Tss)
kernelSystemRegs.TR.base = tssBase
kernelSystemRegs.TR.limit = uint32(tssLimit)
// Point to kernel page tables, with no initial PCID.
kernelSystemRegs.CR3 = c.machine.kernel.PageTables.CR3(false, 0)
// Initialize the PCID database.
if hasGuestPCID {
// Note that NewPCIDs may return a nil table here, in which
// case we simply don't use PCID support (see below). In
// practice, this should not happen, however.
c.PCIDs = pagetables.NewPCIDs(fixedKernelPCID+1, poolPCIDs)
}
// Set the CPUID; this is required before setting system registers,
// since KVM will reject several CR4 bits if the CPUID does not
// indicate the support is available.
if err := c.setCPUID(); err != nil {
return err
}
// Set the entrypoint for the kernel.
kernelUserRegs.RIP = uint64(reflect.ValueOf(ring0.Start).Pointer())
kernelUserRegs.RAX = uint64(reflect.ValueOf(&c.CPU).Pointer())
kernelUserRegs.RFLAGS = ring0.KernelFlagsSet
// Set the system registers.
if err := c.setSystemRegisters(&kernelSystemRegs); err != nil {
return err
}
// Set the user registers.
if err := c.setUserRegisters(&kernelUserRegs); err != nil {
return err
}
// Allocate some floating point state save area for the local vCPU.
// This will be saved prior to leaving the guest, and we restore from
// this always. We cannot use the pointer in the context alone because
// we don't know how large the area there is in reality.
c.floatingPointState = arch.NewFloatingPointData()
// Set the time offset to the host native time.
return c.setSystemTime()
}
// nonCanonical generates a canonical address return.
//
//go:nosplit
func nonCanonical(addr uint64, signal int32, info *arch.SignalInfo) (usermem.AccessType, error) {
*info = arch.SignalInfo{
Signo: signal,
Code: arch.SignalInfoKernel,
}
info.SetAddr(addr) // Include address.
return usermem.NoAccess, platform.ErrContextSignal
}
// fault generates an appropriate fault return.
//
//go:nosplit
func (c *vCPU) fault(signal int32, info *arch.SignalInfo) (usermem.AccessType, error) {
bluepill(c) // Probably no-op, but may not be.
faultAddr := ring0.ReadCR2()
code, user := c.ErrorCode()
if !user {
// The last fault serviced by this CPU was not a user
// fault, so we can't reliably trust the faultAddr or
// the code provided here. We need to re-execute.
return usermem.NoAccess, platform.ErrContextInterrupt
}
// Reset the pointed SignalInfo.
*info = arch.SignalInfo{Signo: signal}
info.SetAddr(uint64(faultAddr))
accessType := usermem.AccessType{
Read: code&(1<<1) == 0,
Write: code&(1<<1) != 0,
Execute: code&(1<<4) != 0,
}
if !accessType.Write && !accessType.Execute {
info.Code = 1 // SEGV_MAPERR.
} else {
info.Code = 2 // SEGV_ACCERR.
}
return accessType, platform.ErrContextSignal
}
// SwitchToUser unpacks architectural-details.
func (c *vCPU) SwitchToUser(switchOpts ring0.SwitchOpts, info *arch.SignalInfo) (usermem.AccessType, error) {
// Check for canonical addresses.
if regs := switchOpts.Registers; !ring0.IsCanonical(regs.Rip) {
return nonCanonical(regs.Rip, int32(syscall.SIGSEGV), info)
} else if !ring0.IsCanonical(regs.Rsp) {
return nonCanonical(regs.Rsp, int32(syscall.SIGBUS), info)
} else if !ring0.IsCanonical(regs.Fs_base) {
return nonCanonical(regs.Fs_base, int32(syscall.SIGBUS), info)
} else if !ring0.IsCanonical(regs.Gs_base) {
return nonCanonical(regs.Gs_base, int32(syscall.SIGBUS), info)
}
// Assign PCIDs.
if c.PCIDs != nil {
var requireFlushPCID bool // Force a flush?
switchOpts.UserPCID, requireFlushPCID = c.PCIDs.Assign(switchOpts.PageTables)
switchOpts.KernelPCID = fixedKernelPCID
switchOpts.Flush = switchOpts.Flush || requireFlushPCID
}
// See below.
var vector ring0.Vector
// Past this point, stack growth can cause system calls (and a break
// from guest mode). So we need to ensure that between the bluepill
// call here and the switch call immediately below, no additional
// allocations occur.
entersyscall()
bluepill(c)
vector = c.CPU.SwitchToUser(switchOpts)
exitsyscall()
switch vector {
case ring0.Syscall, ring0.SyscallInt80:
// Fast path: system call executed.
return usermem.NoAccess, nil
case ring0.PageFault:
return c.fault(int32(syscall.SIGSEGV), info)
case ring0.Debug, ring0.Breakpoint:
*info = arch.SignalInfo{
Signo: int32(syscall.SIGTRAP),
Code: 1, // TRAP_BRKPT (breakpoint).
}
info.SetAddr(switchOpts.Registers.Rip) // Include address.
return usermem.AccessType{}, platform.ErrContextSignal
case ring0.GeneralProtectionFault,
ring0.SegmentNotPresent,
ring0.BoundRangeExceeded,
ring0.InvalidTSS,
ring0.StackSegmentFault:
*info = arch.SignalInfo{
Signo: int32(syscall.SIGSEGV),
Code: arch.SignalInfoKernel,
}
info.SetAddr(switchOpts.Registers.Rip) // Include address.
if vector == ring0.GeneralProtectionFault {
// When CPUID faulting is enabled, we will generate a #GP(0) when
// userspace executes a CPUID instruction. This is handled above,
// because we need to be able to map and read user memory.
return usermem.AccessType{}, platform.ErrContextSignalCPUID
}
return usermem.AccessType{}, platform.ErrContextSignal
case ring0.InvalidOpcode:
*info = arch.SignalInfo{
Signo: int32(syscall.SIGILL),
Code: 1, // ILL_ILLOPC (illegal opcode).
}
info.SetAddr(switchOpts.Registers.Rip) // Include address.
return usermem.AccessType{}, platform.ErrContextSignal
case ring0.DivideByZero:
*info = arch.SignalInfo{
Signo: int32(syscall.SIGFPE),
Code: 1, // FPE_INTDIV (divide by zero).
}
info.SetAddr(switchOpts.Registers.Rip) // Include address.
return usermem.AccessType{}, platform.ErrContextSignal
case ring0.Overflow:
*info = arch.SignalInfo{
Signo: int32(syscall.SIGFPE),
Code: 2, // FPE_INTOVF (integer overflow).
}
info.SetAddr(switchOpts.Registers.Rip) // Include address.
return usermem.AccessType{}, platform.ErrContextSignal
case ring0.X87FloatingPointException,
ring0.SIMDFloatingPointException:
*info = arch.SignalInfo{
Signo: int32(syscall.SIGFPE),
Code: 7, // FPE_FLTINV (invalid operation).
}
info.SetAddr(switchOpts.Registers.Rip) // Include address.
return usermem.AccessType{}, platform.ErrContextSignal
case ring0.Vector(bounce): // ring0.VirtualizationException
return usermem.NoAccess, platform.ErrContextInterrupt
case ring0.AlignmentCheck:
*info = arch.SignalInfo{
Signo: int32(syscall.SIGBUS),
Code: 2, // BUS_ADRERR (physical address does not exist).
}
return usermem.NoAccess, platform.ErrContextSignal
case ring0.NMI:
// An NMI is generated only when a fault is not servicable by
// KVM itself, so we think some mapping is writeable but it's
// really not. This could happen, e.g. if some file is
// truncated (and would generate a SIGBUS) and we map it
// directly into the instance.
return c.fault(int32(syscall.SIGBUS), info)
case ring0.DeviceNotAvailable,
ring0.DoubleFault,
ring0.CoprocessorSegmentOverrun,
ring0.MachineCheck,
ring0.SecurityException:
fallthrough
default:
panic(fmt.Sprintf("unexpected vector: 0x%x", vector))
}
}
// retryInGuest runs the given function in guest mode.
//
// If the function does not complete in guest mode (due to execution of a
// system call due to a GC stall, for example), then it will be retried. The
// given function must be idempotent as a result of the retry mechanism.
func (m *machine) retryInGuest(fn func()) {
c := m.Get()
defer m.Put(c)
for {
c.ClearErrorCode() // See below.
bluepill(c) // Force guest mode.
fn() // Execute the given function.
_, user := c.ErrorCode()
if user {
// If user is set, then we haven't bailed back to host
// mode via a kernel exception or system call. We
// consider the full function to have executed in guest
// mode and we can return.
break
}
}
}
// On x86 platform, the flags for "setMemoryRegion" can always be set as 0.
// There is no need to return read-only physicalRegions.
func rdonlyRegionsForSetMem() (phyRegions []physicalRegion) {
return nil
}
func availableRegionsForSetMem() (phyRegions []physicalRegion) {
return physicalRegions
}
|