1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// +build go1.12
// +build !go1.15
// Check go:linkname function signatures when updating Go version.
package kvm
import (
"sync/atomic"
"syscall"
"unsafe"
"gvisor.dev/gvisor/pkg/sentry/arch"
)
//go:linkname throw runtime.throw
func throw(string)
// vCPUPtr returns a CPU for the given address.
//
//go:nosplit
func vCPUPtr(addr uintptr) *vCPU {
return (*vCPU)(unsafe.Pointer(addr))
}
// bytePtr returns a bytePtr for the given address.
//
//go:nosplit
func bytePtr(addr uintptr) *byte {
return (*byte)(unsafe.Pointer(addr))
}
// uintptrValue returns a uintptr for the given address.
//
//go:nosplit
func uintptrValue(addr *byte) uintptr {
return (uintptr)(unsafe.Pointer(addr))
}
// bluepillArchContext returns the UContext64.
//
//go:nosplit
func bluepillArchContext(context unsafe.Pointer) *arch.SignalContext64 {
return &((*arch.UContext64)(context).MContext)
}
// bluepillHandler is called from the signal stub.
//
// The world may be stopped while this is executing, and it executes on the
// signal stack. It should only execute raw system calls and functions that are
// explicitly marked go:nosplit.
//
//go:nosplit
func bluepillHandler(context unsafe.Pointer) {
// Sanitize the registers; interrupts must always be disabled.
c := bluepillArchEnter(bluepillArchContext(context))
// Increment the number of switches.
atomic.AddUint32(&c.switches, 1)
// Mark this as guest mode.
switch atomic.SwapUint32(&c.state, vCPUGuest|vCPUUser) {
case vCPUUser: // Expected case.
case vCPUUser | vCPUWaiter:
c.notify()
default:
throw("invalid state")
}
for {
switch _, _, errno := syscall.RawSyscall(syscall.SYS_IOCTL, uintptr(c.fd), _KVM_RUN, 0); errno {
case 0: // Expected case.
case syscall.EINTR:
// First, we process whatever pending signal
// interrupted KVM. Since we're in a signal handler
// currently, all signals are masked and the signal
// must have been delivered directly to this thread.
timeout := syscall.Timespec{}
sig, _, errno := syscall.RawSyscall6(
syscall.SYS_RT_SIGTIMEDWAIT,
uintptr(unsafe.Pointer(&bounceSignalMask)),
0, // siginfo.
uintptr(unsafe.Pointer(&timeout)), // timeout.
8, // sigset size.
0, 0)
if errno == syscall.EAGAIN {
continue
}
if errno != 0 {
throw("error waiting for pending signal")
}
if sig != uintptr(bounceSignal) {
throw("unexpected signal")
}
// Check whether the current state of the vCPU is ready
// for interrupt injection. Because we don't have a
// PIC, we can't inject an interrupt while they are
// masked. We need to request a window if it's not
// ready.
if c.runData.readyForInterruptInjection == 0 {
c.runData.requestInterruptWindow = 1
continue // Rerun vCPU.
} else {
// Force injection below; the vCPU is ready.
c.runData.exitReason = _KVM_EXIT_IRQ_WINDOW_OPEN
}
case syscall.EFAULT:
// If a fault is not serviceable due to the host
// backing pages having page permissions, instead of an
// MMIO exit we receive EFAULT from the run ioctl. We
// always inject an NMI here since we may be in kernel
// mode and have interrupts disabled.
if _, _, errno := syscall.RawSyscall(
syscall.SYS_IOCTL,
uintptr(c.fd),
_KVM_NMI, 0); errno != 0 {
throw("NMI injection failed")
}
continue // Rerun vCPU.
default:
throw("run failed")
}
switch c.runData.exitReason {
case _KVM_EXIT_EXCEPTION:
c.die(bluepillArchContext(context), "exception")
return
case _KVM_EXIT_IO:
c.die(bluepillArchContext(context), "I/O")
return
case _KVM_EXIT_INTERNAL_ERROR:
// An internal error is typically thrown when emulation
// fails. This can occur via the MMIO path below (and
// it might fail because we have multiple regions that
// are not mapped). We would actually prefer that no
// emulation occur, and don't mind at all if it fails.
case _KVM_EXIT_HYPERCALL:
c.die(bluepillArchContext(context), "hypercall")
return
case _KVM_EXIT_DEBUG:
c.die(bluepillArchContext(context), "debug")
return
case _KVM_EXIT_HLT:
// Copy out registers.
bluepillArchExit(c, bluepillArchContext(context))
// Return to the vCPUReady state; notify any waiters.
user := atomic.LoadUint32(&c.state) & vCPUUser
switch atomic.SwapUint32(&c.state, user) {
case user | vCPUGuest: // Expected case.
case user | vCPUGuest | vCPUWaiter:
c.notify()
default:
throw("invalid state")
}
return
case _KVM_EXIT_MMIO:
// Increment the fault count.
atomic.AddUint32(&c.faults, 1)
// For MMIO, the physical address is the first data item.
physical := uintptr(c.runData.data[0])
virtual, ok := handleBluepillFault(c.machine, physical, physicalRegions, _KVM_MEM_FLAGS_NONE)
if !ok {
c.die(bluepillArchContext(context), "invalid physical address")
return
}
// We now need to fill in the data appropriately. KVM
// expects us to provide the result of the given MMIO
// operation in the runData struct. This is safe
// because, if a fault occurs here, the same fault
// would have occurred in guest mode. The kernel should
// not create invalid page table mappings.
data := (*[8]byte)(unsafe.Pointer(&c.runData.data[1]))
length := (uintptr)((uint32)(c.runData.data[2]))
write := (uint8)(((c.runData.data[2] >> 32) & 0xff)) != 0
for i := uintptr(0); i < length; i++ {
b := bytePtr(uintptr(virtual) + i)
if write {
// Write to the given address.
*b = data[i]
} else {
// Read from the given address.
data[i] = *b
}
}
case _KVM_EXIT_IRQ_WINDOW_OPEN:
// Interrupt: we must have requested an interrupt
// window; set the interrupt line.
if _, _, errno := syscall.RawSyscall(
syscall.SYS_IOCTL,
uintptr(c.fd),
_KVM_INTERRUPT,
uintptr(unsafe.Pointer(&bounce))); errno != 0 {
throw("interrupt injection failed")
}
// Clear previous injection request.
c.runData.requestInterruptWindow = 0
case _KVM_EXIT_SHUTDOWN:
c.die(bluepillArchContext(context), "shutdown")
return
case _KVM_EXIT_FAIL_ENTRY:
c.die(bluepillArchContext(context), "entry failed")
return
default:
c.die(bluepillArchContext(context), "unknown")
return
}
}
}
|