blob: 421c8822042e92aa9b16149167c36e2a50a9d9b6 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// +build amd64
package kvm
import (
"syscall"
"gvisor.dev/gvisor/pkg/sentry/arch"
"gvisor.dev/gvisor/pkg/sentry/platform/ring0"
)
var (
// bounceSignal is the signal used for bouncing KVM.
//
// We use SIGCHLD because it is not masked by the runtime, and
// it will be ignored properly by other parts of the kernel.
bounceSignal = syscall.SIGCHLD
// bounceSignalMask has only bounceSignal set.
bounceSignalMask = uint64(1 << (uint64(bounceSignal) - 1))
// bounce is the interrupt vector used to return to the kernel.
bounce = uint32(ring0.VirtualizationException)
)
// redpill on amd64 invokes a syscall with -1.
//
//go:nosplit
func redpill() {
syscall.RawSyscall(^uintptr(0), 0, 0, 0)
}
// bluepillArchEnter is called during bluepillEnter.
//
//go:nosplit
func bluepillArchEnter(context *arch.SignalContext64) *vCPU {
c := vCPUPtr(uintptr(context.Rax))
regs := c.CPU.Registers()
regs.R8 = context.R8
regs.R9 = context.R9
regs.R10 = context.R10
regs.R11 = context.R11
regs.R12 = context.R12
regs.R13 = context.R13
regs.R14 = context.R14
regs.R15 = context.R15
regs.Rdi = context.Rdi
regs.Rsi = context.Rsi
regs.Rbp = context.Rbp
regs.Rbx = context.Rbx
regs.Rdx = context.Rdx
regs.Rax = context.Rax
regs.Rcx = context.Rcx
regs.Rsp = context.Rsp
regs.Rip = context.Rip
regs.Eflags = context.Eflags
regs.Eflags &^= uint64(ring0.KernelFlagsClear)
regs.Eflags |= ring0.KernelFlagsSet
regs.Cs = uint64(ring0.Kcode)
regs.Ds = uint64(ring0.Udata)
regs.Es = uint64(ring0.Udata)
regs.Ss = uint64(ring0.Kdata)
return c
}
// KernelSyscall handles kernel syscalls.
//
//go:nosplit
func (c *vCPU) KernelSyscall() {
regs := c.Registers()
if regs.Rax != ^uint64(0) {
regs.Rip -= 2 // Rewind.
}
// We only trigger a bluepill entry in the bluepill function, and can
// therefore be guaranteed that there is no floating point state to be
// loaded on resuming from halt. We only worry about saving on exit.
ring0.SaveFloatingPoint((*byte)(c.floatingPointState))
ring0.Halt()
ring0.WriteFS(uintptr(regs.Fs_base)) // Reload host segment.
}
// KernelException handles kernel exceptions.
//
//go:nosplit
func (c *vCPU) KernelException(vector ring0.Vector) {
regs := c.Registers()
if vector == ring0.Vector(bounce) {
// These should not interrupt kernel execution; point the Rip
// to zero to ensure that we get a reasonable panic when we
// attempt to return and a full stack trace.
regs.Rip = 0
}
// See above.
ring0.SaveFloatingPoint((*byte)(c.floatingPointState))
ring0.Halt()
ring0.WriteFS(uintptr(regs.Fs_base)) // Reload host segment.
}
// bluepillArchExit is called during bluepillEnter.
//
//go:nosplit
func bluepillArchExit(c *vCPU, context *arch.SignalContext64) {
regs := c.CPU.Registers()
context.R8 = regs.R8
context.R9 = regs.R9
context.R10 = regs.R10
context.R11 = regs.R11
context.R12 = regs.R12
context.R13 = regs.R13
context.R14 = regs.R14
context.R15 = regs.R15
context.Rdi = regs.Rdi
context.Rsi = regs.Rsi
context.Rbp = regs.Rbp
context.Rbx = regs.Rbx
context.Rdx = regs.Rdx
context.Rax = regs.Rax
context.Rcx = regs.Rcx
context.Rsp = regs.Rsp
context.Rip = regs.Rip
context.Eflags = regs.Eflags
// Set the context pointer to the saved floating point state. This is
// where the guest data has been serialized, the kernel will restore
// from this new pointer value.
context.Fpstate = uint64(uintptrValue((*byte)(c.floatingPointState)))
}
|