1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
|
// Copyright 2018 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package pgalloc contains the page allocator subsystem, which manages memory
// that may be mapped into application address spaces.
//
// Lock order:
//
// pgalloc.MemoryFile.mu
// pgalloc.MemoryFile.mappingsMu
package pgalloc
import (
"fmt"
"math"
"os"
"sync"
"sync/atomic"
"syscall"
"time"
"gvisor.googlesource.com/gvisor/pkg/log"
"gvisor.googlesource.com/gvisor/pkg/sentry/platform"
"gvisor.googlesource.com/gvisor/pkg/sentry/safemem"
"gvisor.googlesource.com/gvisor/pkg/sentry/usage"
"gvisor.googlesource.com/gvisor/pkg/sentry/usermem"
"gvisor.googlesource.com/gvisor/pkg/syserror"
)
// MemoryFile is a platform.File whose pages may be allocated to arbitrary
// users.
type MemoryFile struct {
// MemoryFile owns a single backing file, which is modeled as follows:
//
// Each page in the file can be committed or uncommitted. A page is
// committed if the host kernel is spending resources to store its contents
// and uncommitted otherwise. This definition includes pages that the host
// kernel has swapped; this is intentional, to ensure that accounting does
// not change even if host kernel swapping behavior changes, and that
// memory used by pseudo-swap mechanisms like zswap is still accounted.
//
// The initial contents of uncommitted pages are implicitly zero bytes. A
// read or write to the contents of an uncommitted page causes it to be
// committed. This is the only event that can cause a uncommitted page to
// be committed.
//
// fallocate(FALLOC_FL_PUNCH_HOLE) (MemoryFile.Decommit) causes committed
// pages to be uncommitted. This is the only event that can cause a
// committed page to be uncommitted.
//
// Memory accounting is based on identifying the set of committed pages.
// Since we do not have direct access to the MMU, tracking reads and writes
// to uncommitted pages to detect commitment would introduce additional
// page faults, which would be prohibitively expensive. Instead, we query
// the host kernel to determine which pages are committed.
// file is the backing file. The file pointer is immutable.
file *os.File
mu sync.Mutex
// usage maps each page in the file to metadata for that page. Pages for
// which no segment exists in usage are both unallocated (not in use) and
// uncommitted.
//
// Since usage stores usageInfo objects by value, clients should usually
// use usageIterator.ValuePtr() instead of usageIterator.Value() to get a
// pointer to the usageInfo rather than a copy.
//
// usage must be kept maximally merged (that is, there should never be two
// adjacent segments with the same values). At least markReclaimed depends
// on this property.
//
// usage is protected by mu.
usage usageSet
// The UpdateUsage function scans all segments with knownCommitted set
// to false, sees which pages are committed and creates corresponding
// segments with knownCommitted set to true.
//
// In order to avoid unnecessary scans, usageExpected tracks the total
// file blocks expected. This is used to elide the scan when this
// matches the underlying file blocks.
//
// To track swapped pages, usageSwapped tracks the discrepency between
// what is observed in core and what is reported by the file. When
// usageSwapped is non-zero, a sweep will be performed at least every
// second. The start of the last sweep is recorded in usageLast.
//
// All usage attributes are all protected by mu.
usageExpected uint64
usageSwapped uint64
usageLast time.Time
// minUnallocatedPage is the minimum page that may be unallocated.
// i.e., there are no unallocated pages below minUnallocatedPage.
//
// minUnallocatedPage is protected by mu.
minUnallocatedPage uint64
// fileSize is the size of the backing memory file in bytes. fileSize is
// always a power-of-two multiple of chunkSize.
//
// fileSize is protected by mu.
fileSize int64
// destroyed is set by Destroy to instruct the reclaimer goroutine to
// release resources and exit. destroyed is protected by mu.
destroyed bool
// reclaimable is true if usage may contain reclaimable pages. reclaimable
// is protected by mu.
reclaimable bool
// minReclaimablePage is the minimum page that may be reclaimable.
// i.e., all reclaimable pages are >= minReclaimablePage.
//
// minReclaimablePage is protected by mu.
minReclaimablePage uint64
// reclaimCond is signaled (with mu locked) when reclaimable or destroyed
// transitions from false to true.
reclaimCond sync.Cond
// Pages from the backing file are mapped into the local address space on
// the granularity of large pieces called chunks. mappings is a []uintptr
// that stores, for each chunk, the start address of a mapping of that
// chunk in the current process' address space, or 0 if no such mapping
// exists. Once a chunk is mapped, it is never remapped or unmapped until
// the MemoryFile is destroyed.
//
// Mutating the mappings slice or its contents requires both holding
// mappingsMu and using atomic memory operations. (The slice is mutated
// whenever the file is expanded. Per the above, the only permitted
// mutation of the slice's contents is the assignment of a mapping to a
// chunk that was previously unmapped.) Reading the slice or its contents
// only requires *either* holding mappingsMu or using atomic memory
// operations. This allows MemoryFile.MapInternal to avoid locking in the
// common case where chunk mappings already exist.
mappingsMu sync.Mutex
mappings atomic.Value
}
// usage tracks usage information.
//
// +stateify savable
type usageInfo struct {
// kind is the usage kind.
kind usage.MemoryKind
// knownCommitted is true if the tracked region is definitely committed.
// (If it is false, the tracked region may or may not be committed.)
knownCommitted bool
refs uint64
}
const (
chunkShift = 24
chunkSize = 1 << chunkShift // 16 MB
chunkMask = chunkSize - 1
initialSize = chunkSize
// maxPage is the highest 64-bit page.
maxPage = math.MaxUint64 &^ (usermem.PageSize - 1)
)
// NewMemoryFile creates a MemoryFile backed by the given file. If
// NewMemoryFile succeeds, ownership of file is transferred to the returned
// MemoryFile.
func NewMemoryFile(file *os.File) (*MemoryFile, error) {
// Truncate the file to 0 bytes first to ensure that it's empty.
if err := file.Truncate(0); err != nil {
return nil, err
}
if err := file.Truncate(initialSize); err != nil {
return nil, err
}
f := &MemoryFile{
fileSize: initialSize,
file: file,
// No pages are reclaimable. DecRef will always be able to
// decrease minReclaimablePage from this point.
minReclaimablePage: maxPage,
}
f.reclaimCond.L = &f.mu
f.mappings.Store(make([]uintptr, initialSize/chunkSize))
go f.runReclaim() // S/R-SAFE: f.mu
// The Linux kernel contains an optional feature called "Integrity
// Measurement Architecture" (IMA). If IMA is enabled, it will checksum
// binaries the first time they are mapped PROT_EXEC. This is bad news for
// executable pages mapped from our backing file, which can grow to
// terabytes in (sparse) size. If IMA attempts to checksum a file that
// large, it will allocate all of the sparse pages and quickly exhaust all
// memory.
//
// Work around IMA by immediately creating a temporary PROT_EXEC mapping,
// while the backing file is still small. IMA will ignore any future
// mappings.
m, _, errno := syscall.Syscall6(
syscall.SYS_MMAP,
0,
usermem.PageSize,
syscall.PROT_EXEC,
syscall.MAP_SHARED,
file.Fd(),
0)
if errno != 0 {
// This isn't fatal (IMA may not even be in use). Log the error, but
// don't return it.
log.Warningf("Failed to pre-map MemoryFile PROT_EXEC: %v", errno)
} else {
if _, _, errno := syscall.Syscall(
syscall.SYS_MUNMAP,
m,
usermem.PageSize,
0); errno != 0 {
panic(fmt.Sprintf("failed to unmap PROT_EXEC MemoryFile mapping: %v", errno))
}
}
return f, nil
}
// Destroy releases all resources used by f.
//
// Preconditions: All pages allocated by f have been freed.
//
// Postconditions: None of f's methods may be called after Destroy.
func (f *MemoryFile) Destroy() {
f.mu.Lock()
defer f.mu.Unlock()
f.destroyed = true
f.reclaimCond.Signal()
}
// Allocate returns a range of initially-zeroed pages of the given length with
// the given accounting kind and a single reference held by the caller. When
// the last reference on an allocated page is released, ownership of the page
// is returned to the MemoryFile, allowing it to be returned by a future call
// to Allocate.
//
// Preconditions: length must be page-aligned and non-zero.
func (f *MemoryFile) Allocate(length uint64, kind usage.MemoryKind) (platform.FileRange, error) {
if length == 0 || length%usermem.PageSize != 0 {
panic(fmt.Sprintf("invalid allocation length: %#x", length))
}
f.mu.Lock()
defer f.mu.Unlock()
// Align hugepage-and-larger allocations on hugepage boundaries to try
// to take advantage of hugetmpfs.
alignment := uint64(usermem.PageSize)
if length >= usermem.HugePageSize {
alignment = usermem.HugePageSize
}
start, minUnallocatedPage := findUnallocatedRange(&f.usage, f.minUnallocatedPage, length, alignment)
end := start + length
// File offsets are int64s. Since length must be strictly positive, end
// cannot legitimately be 0.
if end < start || int64(end) <= 0 {
return platform.FileRange{}, syserror.ENOMEM
}
// Expand the file if needed. Double the file size on each expansion;
// uncommitted pages have effectively no cost.
fileSize := f.fileSize
for int64(end) > fileSize {
if fileSize >= 2*fileSize {
// fileSize overflow.
return platform.FileRange{}, syserror.ENOMEM
}
fileSize *= 2
}
if fileSize > f.fileSize {
if err := f.file.Truncate(fileSize); err != nil {
return platform.FileRange{}, err
}
f.fileSize = fileSize
f.mappingsMu.Lock()
oldMappings := f.mappings.Load().([]uintptr)
newMappings := make([]uintptr, fileSize>>chunkShift)
copy(newMappings, oldMappings)
f.mappings.Store(newMappings)
f.mappingsMu.Unlock()
}
// Mark selected pages as in use.
fr := platform.FileRange{start, end}
if !f.usage.Add(fr, usageInfo{
kind: kind,
refs: 1,
}) {
panic(fmt.Sprintf("allocating %v: failed to insert into usage set:\n%v", fr, &f.usage))
}
if minUnallocatedPage < start {
f.minUnallocatedPage = minUnallocatedPage
} else {
// start was the first unallocated page. The next must be
// somewhere beyond end.
f.minUnallocatedPage = end
}
return fr, nil
}
// findUnallocatedRange returns the first unallocated page in usage of the
// specified length and alignment beginning at page start and the first single
// unallocated page.
func findUnallocatedRange(usage *usageSet, start, length, alignment uint64) (uint64, uint64) {
// Only searched until the first page is found.
firstPage := start
foundFirstPage := false
alignMask := alignment - 1
for seg := usage.LowerBoundSegment(start); seg.Ok(); seg = seg.NextSegment() {
r := seg.Range()
if !foundFirstPage && r.Start > firstPage {
foundFirstPage = true
}
if start >= r.End {
// start was rounded up to an alignment boundary from the end
// of a previous segment and is now beyond r.End.
continue
}
// This segment represents allocated or reclaimable pages; only the
// range from start to the segment's beginning is allocatable, and the
// next allocatable range begins after the segment.
if r.Start > start && r.Start-start >= length {
break
}
start = (r.End + alignMask) &^ alignMask
if !foundFirstPage {
firstPage = r.End
}
}
return start, firstPage
}
// AllocateAndFill allocates memory of the given kind and fills it by calling
// r.ReadToBlocks() repeatedly until either length bytes are read or a non-nil
// error is returned. It returns the memory filled by r, truncated down to the
// nearest page. If this is shorter than length bytes due to an error returned
// by r.ReadToBlocks(), it returns that error.
//
// Preconditions: length > 0. length must be page-aligned.
func (f *MemoryFile) AllocateAndFill(length uint64, kind usage.MemoryKind, r safemem.Reader) (platform.FileRange, error) {
fr, err := f.Allocate(length, kind)
if err != nil {
return platform.FileRange{}, err
}
dsts, err := f.MapInternal(fr, usermem.Write)
if err != nil {
f.DecRef(fr)
return platform.FileRange{}, err
}
n, err := safemem.ReadFullToBlocks(r, dsts)
un := uint64(usermem.Addr(n).RoundDown())
if un < length {
// Free unused memory and update fr to contain only the memory that is
// still allocated.
f.DecRef(platform.FileRange{fr.Start + un, fr.End})
fr.End = fr.Start + un
}
return fr, err
}
// fallocate(2) modes, defined in Linux's include/uapi/linux/falloc.h.
const (
_FALLOC_FL_KEEP_SIZE = 1
_FALLOC_FL_PUNCH_HOLE = 2
)
// Decommit releases resources associated with maintaining the contents of the
// given pages. If Decommit succeeds, future accesses of the decommitted pages
// will read zeroes.
//
// Preconditions: fr.Length() > 0.
func (f *MemoryFile) Decommit(fr platform.FileRange) error {
if !fr.WellFormed() || fr.Length() == 0 || fr.Start%usermem.PageSize != 0 || fr.End%usermem.PageSize != 0 {
panic(fmt.Sprintf("invalid range: %v", fr))
}
// "After a successful call, subsequent reads from this range will
// return zeroes. The FALLOC_FL_PUNCH_HOLE flag must be ORed with
// FALLOC_FL_KEEP_SIZE in mode ..." - fallocate(2)
err := syscall.Fallocate(
int(f.file.Fd()),
_FALLOC_FL_PUNCH_HOLE|_FALLOC_FL_KEEP_SIZE,
int64(fr.Start),
int64(fr.Length()))
if err != nil {
return err
}
f.markDecommitted(fr)
return nil
}
func (f *MemoryFile) markDecommitted(fr platform.FileRange) {
f.mu.Lock()
defer f.mu.Unlock()
// Since we're changing the knownCommitted attribute, we need to merge
// across the entire range to ensure that the usage tree is minimal.
gap := f.usage.ApplyContiguous(fr, func(seg usageIterator) {
val := seg.ValuePtr()
if val.knownCommitted {
// Drop the usageExpected appropriately.
amount := seg.Range().Length()
usage.MemoryAccounting.Dec(amount, val.kind)
f.usageExpected -= amount
val.knownCommitted = false
}
})
if gap.Ok() {
panic(fmt.Sprintf("Decommit(%v): attempted to decommit unallocated pages %v:\n%v", fr, gap.Range(), &f.usage))
}
f.usage.MergeRange(fr)
}
// runReclaim implements the reclaimer goroutine, which continuously decommits
// reclaimable pages in order to reduce memory usage and make them available
// for allocation.
func (f *MemoryFile) runReclaim() {
for {
fr, ok := f.findReclaimable()
if !ok {
break
}
if err := f.Decommit(fr); err != nil {
log.Warningf("Reclaim failed to decommit %v: %v", fr, err)
// Zero the pages manually. This won't reduce memory usage, but at
// least ensures that the pages will be zero when reallocated.
f.forEachMappingSlice(fr, func(bs []byte) {
for i := range bs {
bs[i] = 0
}
})
// Pretend the pages were decommitted even though they weren't,
// since the memory accounting implementation has no idea how to
// deal with this.
f.markDecommitted(fr)
}
f.markReclaimed(fr)
}
// We only get here if findReclaimable finds f.destroyed set and returns
// false.
f.mu.Lock()
defer f.mu.Unlock()
if !f.destroyed {
panic("findReclaimable broke out of reclaim loop, but destroyed is no longer set")
}
f.file.Close()
// Ensure that any attempts to use f.file.Fd() fail instead of getting a fd
// that has possibly been reassigned.
f.file = nil
mappings := f.mappings.Load().([]uintptr)
for i, m := range mappings {
if m != 0 {
_, _, errno := syscall.Syscall(syscall.SYS_MUNMAP, m, chunkSize, 0)
if errno != 0 {
log.Warningf("Failed to unmap mapping %#x for MemoryFile chunk %d: %v", m, i, errno)
}
}
}
// Similarly, invalidate f.mappings. (atomic.Value.Store(nil) panics.)
f.mappings.Store([]uintptr{})
}
func (f *MemoryFile) findReclaimable() (platform.FileRange, bool) {
f.mu.Lock()
defer f.mu.Unlock()
for {
for {
if f.destroyed {
return platform.FileRange{}, false
}
if f.reclaimable {
break
}
f.reclaimCond.Wait()
}
// Allocate returns the first usable range in offset order and is
// currently a linear scan, so reclaiming from the beginning of the
// file minimizes the expected latency of Allocate.
for seg := f.usage.LowerBoundSegment(f.minReclaimablePage); seg.Ok(); seg = seg.NextSegment() {
if seg.ValuePtr().refs == 0 {
f.minReclaimablePage = seg.End()
return seg.Range(), true
}
}
// No pages are reclaimable.
f.reclaimable = false
f.minReclaimablePage = maxPage
}
}
func (f *MemoryFile) markReclaimed(fr platform.FileRange) {
f.mu.Lock()
defer f.mu.Unlock()
seg := f.usage.FindSegment(fr.Start)
// All of fr should be mapped to a single uncommitted reclaimable segment
// accounted to System.
if !seg.Ok() {
panic(fmt.Sprintf("reclaimed pages %v include unreferenced pages:\n%v", fr, &f.usage))
}
if !seg.Range().IsSupersetOf(fr) {
panic(fmt.Sprintf("reclaimed pages %v are not entirely contained in segment %v with state %v:\n%v", fr, seg.Range(), seg.Value(), &f.usage))
}
if got, want := seg.Value(), (usageInfo{
kind: usage.System,
knownCommitted: false,
refs: 0,
}); got != want {
panic(fmt.Sprintf("reclaimed pages %v in segment %v has incorrect state %v, wanted %v:\n%v", fr, seg.Range(), got, want, &f.usage))
}
// Deallocate reclaimed pages. Even though all of seg is reclaimable, the
// caller of markReclaimed may not have decommitted it, so we can only mark
// fr as reclaimed.
f.usage.Remove(f.usage.Isolate(seg, fr))
if fr.Start < f.minUnallocatedPage {
// We've deallocated at least one lower page.
f.minUnallocatedPage = fr.Start
}
}
// IncRef implements platform.File.IncRef.
func (f *MemoryFile) IncRef(fr platform.FileRange) {
if !fr.WellFormed() || fr.Length() == 0 || fr.Start%usermem.PageSize != 0 || fr.End%usermem.PageSize != 0 {
panic(fmt.Sprintf("invalid range: %v", fr))
}
f.mu.Lock()
defer f.mu.Unlock()
gap := f.usage.ApplyContiguous(fr, func(seg usageIterator) {
seg.ValuePtr().refs++
})
if gap.Ok() {
panic(fmt.Sprintf("IncRef(%v): attempted to IncRef on unallocated pages %v:\n%v", fr, gap.Range(), &f.usage))
}
f.usage.MergeAdjacent(fr)
}
// DecRef implements platform.File.DecRef.
func (f *MemoryFile) DecRef(fr platform.FileRange) {
if !fr.WellFormed() || fr.Length() == 0 || fr.Start%usermem.PageSize != 0 || fr.End%usermem.PageSize != 0 {
panic(fmt.Sprintf("invalid range: %v", fr))
}
var freed bool
f.mu.Lock()
defer f.mu.Unlock()
for seg := f.usage.FindSegment(fr.Start); seg.Ok() && seg.Start() < fr.End; seg = seg.NextSegment() {
seg = f.usage.Isolate(seg, fr)
val := seg.ValuePtr()
if val.refs == 0 {
panic(fmt.Sprintf("DecRef(%v): 0 existing references on %v:\n%v", fr, seg.Range(), &f.usage))
}
val.refs--
if val.refs == 0 {
freed = true
// Reclassify memory as System, until it's freed by the reclaim
// goroutine.
if val.knownCommitted {
usage.MemoryAccounting.Move(seg.Range().Length(), usage.System, val.kind)
}
val.kind = usage.System
}
}
f.usage.MergeAdjacent(fr)
if freed {
if fr.Start < f.minReclaimablePage {
// We've freed at least one lower page.
f.minReclaimablePage = fr.Start
}
f.reclaimable = true
f.reclaimCond.Signal()
}
}
// MapInternal implements platform.File.MapInternal.
func (f *MemoryFile) MapInternal(fr platform.FileRange, at usermem.AccessType) (safemem.BlockSeq, error) {
if !fr.WellFormed() || fr.Length() == 0 {
panic(fmt.Sprintf("invalid range: %v", fr))
}
if at.Execute {
return safemem.BlockSeq{}, syserror.EACCES
}
chunks := ((fr.End + chunkMask) >> chunkShift) - (fr.Start >> chunkShift)
if chunks == 1 {
// Avoid an unnecessary slice allocation.
var seq safemem.BlockSeq
err := f.forEachMappingSlice(fr, func(bs []byte) {
seq = safemem.BlockSeqOf(safemem.BlockFromSafeSlice(bs))
})
return seq, err
}
blocks := make([]safemem.Block, 0, chunks)
err := f.forEachMappingSlice(fr, func(bs []byte) {
blocks = append(blocks, safemem.BlockFromSafeSlice(bs))
})
return safemem.BlockSeqFromSlice(blocks), err
}
// forEachMappingSlice invokes fn on a sequence of byte slices that
// collectively map all bytes in fr.
func (f *MemoryFile) forEachMappingSlice(fr platform.FileRange, fn func([]byte)) error {
mappings := f.mappings.Load().([]uintptr)
for chunkStart := fr.Start &^ chunkMask; chunkStart < fr.End; chunkStart += chunkSize {
chunk := int(chunkStart >> chunkShift)
m := atomic.LoadUintptr(&mappings[chunk])
if m == 0 {
var err error
mappings, m, err = f.getChunkMapping(chunk)
if err != nil {
return err
}
}
startOff := uint64(0)
if chunkStart < fr.Start {
startOff = fr.Start - chunkStart
}
endOff := uint64(chunkSize)
if chunkStart+chunkSize > fr.End {
endOff = fr.End - chunkStart
}
fn(unsafeSlice(m, chunkSize)[startOff:endOff])
}
return nil
}
func (f *MemoryFile) getChunkMapping(chunk int) ([]uintptr, uintptr, error) {
f.mappingsMu.Lock()
defer f.mappingsMu.Unlock()
// Another thread may have replaced f.mappings altogether due to file
// expansion.
mappings := f.mappings.Load().([]uintptr)
// Another thread may have already mapped the chunk.
if m := mappings[chunk]; m != 0 {
return mappings, m, nil
}
m, _, errno := syscall.Syscall6(
syscall.SYS_MMAP,
0,
chunkSize,
syscall.PROT_READ|syscall.PROT_WRITE,
syscall.MAP_SHARED,
f.file.Fd(),
uintptr(chunk<<chunkShift))
if errno != 0 {
return nil, 0, errno
}
atomic.StoreUintptr(&mappings[chunk], m)
return mappings, m, nil
}
// FD implements platform.File.FD.
func (f *MemoryFile) FD() int {
return int(f.file.Fd())
}
// UpdateUsage ensures that the memory usage statistics in
// usage.MemoryAccounting are up to date.
func (f *MemoryFile) UpdateUsage() error {
f.mu.Lock()
defer f.mu.Unlock()
// If the underlying usage matches where the usage tree already
// represents, then we can just avoid the entire scan (we know it's
// accurate).
currentUsage, err := f.TotalUsage()
if err != nil {
return err
}
if currentUsage == f.usageExpected && f.usageSwapped == 0 {
log.Debugf("UpdateUsage: skipped with usageSwapped=0.")
return nil
}
// If the current usage matches the expected but there's swap
// accounting, then ensure a scan takes place at least every second
// (when requested).
if currentUsage == f.usageExpected+f.usageSwapped && time.Now().Before(f.usageLast.Add(time.Second)) {
log.Debugf("UpdateUsage: skipped with usageSwapped!=0.")
return nil
}
f.usageLast = time.Now()
err = f.updateUsageLocked(currentUsage, mincore)
log.Debugf("UpdateUsage: currentUsage=%d, usageExpected=%d, usageSwapped=%d.",
currentUsage, f.usageExpected, f.usageSwapped)
log.Debugf("UpdateUsage: took %v.", time.Since(f.usageLast))
return err
}
// updateUsageLocked attempts to detect commitment of previous-uncommitted
// pages by invoking checkCommitted, which is a function that, for each page i
// in bs, sets committed[i] to 1 if the page is committed and 0 otherwise.
//
// Precondition: f.mu must be held.
func (f *MemoryFile) updateUsageLocked(currentUsage uint64, checkCommitted func(bs []byte, committed []byte) error) error {
// Track if anything changed to elide the merge. In the common case, we
// expect all segments to be committed and no merge to occur.
changedAny := false
defer func() {
if changedAny {
f.usage.MergeAll()
}
// Adjust the swap usage to reflect reality.
if f.usageExpected < currentUsage {
// Since no pages may be marked decommitted while we hold mu, we
// know that usage may have only increased since we got the last
// current usage. Therefore, if usageExpected is still short of
// currentUsage, we must assume that the difference is in pages
// that have been swapped.
newUsageSwapped := currentUsage - f.usageExpected
if f.usageSwapped < newUsageSwapped {
usage.MemoryAccounting.Inc(newUsageSwapped-f.usageSwapped, usage.System)
} else {
usage.MemoryAccounting.Dec(f.usageSwapped-newUsageSwapped, usage.System)
}
f.usageSwapped = newUsageSwapped
} else if f.usageSwapped != 0 {
// We have more usage accounted for than the file itself.
// That's fine, we probably caught a race where pages were
// being committed while the above loop was running. Just
// report the higher number that we found and ignore swap.
usage.MemoryAccounting.Dec(f.usageSwapped, usage.System)
f.usageSwapped = 0
}
}()
// Reused mincore buffer, will generally be <= 4096 bytes.
var buf []byte
// Iterate over all usage data. There will only be usage segments
// present when there is an associated reference.
for seg := f.usage.FirstSegment(); seg.Ok(); seg = seg.NextSegment() {
val := seg.Value()
// Already known to be committed; ignore.
if val.knownCommitted {
continue
}
// Assume that reclaimable pages (that aren't already known to be
// committed) are not committed. This isn't necessarily true, even
// after the reclaimer does Decommit(), because the kernel may
// subsequently back the hugepage-sized region containing the
// decommitted page with a hugepage. However, it's consistent with our
// treatment of unallocated pages, which have the same property.
if val.refs == 0 {
continue
}
// Get the range for this segment. As we touch slices, the
// Start value will be walked along.
r := seg.Range()
var checkErr error
err := f.forEachMappingSlice(r, func(s []byte) {
if checkErr != nil {
return
}
// Ensure that we have sufficient buffer for the call
// (one byte per page). The length of each slice must
// be page-aligned.
bufLen := len(s) / usermem.PageSize
if len(buf) < bufLen {
buf = make([]byte, bufLen)
}
// Query for new pages in core.
if err := checkCommitted(s, buf); err != nil {
checkErr = err
return
}
// Scan each page and switch out segments.
populatedRun := false
populatedRunStart := 0
for i := 0; i <= bufLen; i++ {
// We run past the end of the slice here to
// simplify the logic and only set populated if
// we're still looking at elements.
populated := false
if i < bufLen {
populated = buf[i]&0x1 != 0
}
switch {
case populated == populatedRun:
// Keep the run going.
continue
case populated && !populatedRun:
// Begin the run.
populatedRun = true
populatedRunStart = i
// Keep going.
continue
case !populated && populatedRun:
// Finish the run by changing this segment.
runRange := platform.FileRange{
Start: r.Start + uint64(populatedRunStart*usermem.PageSize),
End: r.Start + uint64(i*usermem.PageSize),
}
seg = f.usage.Isolate(seg, runRange)
seg.ValuePtr().knownCommitted = true
// Advance the segment only if we still
// have work to do in the context of
// the original segment from the for
// loop. Otherwise, the for loop itself
// will advance the segment
// appropriately.
if runRange.End != r.End {
seg = seg.NextSegment()
}
amount := runRange.Length()
usage.MemoryAccounting.Inc(amount, val.kind)
f.usageExpected += amount
changedAny = true
populatedRun = false
}
}
// Advance r.Start.
r.Start += uint64(len(s))
})
if checkErr != nil {
return checkErr
}
if err != nil {
return err
}
}
return nil
}
// TotalUsage returns an aggregate usage for all memory statistics except
// Mapped (which is external to MemoryFile). This is generally much cheaper
// than UpdateUsage, but will not provide a fine-grained breakdown.
func (f *MemoryFile) TotalUsage() (uint64, error) {
// Stat the underlying file to discover the underlying usage. stat(2)
// always reports the allocated block count in units of 512 bytes. This
// includes pages in the page cache and swapped pages.
var stat syscall.Stat_t
if err := syscall.Fstat(int(f.file.Fd()), &stat); err != nil {
return 0, err
}
return uint64(stat.Blocks * 512), nil
}
// TotalSize returns the current size of the backing file in bytes, which is an
// upper bound on the amount of memory that can currently be allocated from the
// MemoryFile. The value returned by TotalSize is permitted to change.
func (f *MemoryFile) TotalSize() uint64 {
f.mu.Lock()
defer f.mu.Unlock()
return uint64(f.fileSize)
}
// File returns the backing file.
func (f *MemoryFile) File() *os.File {
return f.file
}
// String implements fmt.Stringer.String.
//
// Note that because f.String locks f.mu, calling f.String internally
// (including indirectly through the fmt package) risks recursive locking.
// Within the pgalloc package, use f.usage directly instead.
func (f *MemoryFile) String() string {
f.mu.Lock()
defer f.mu.Unlock()
return f.usage.String()
}
type usageSetFunctions struct{}
func (usageSetFunctions) MinKey() uint64 {
return 0
}
func (usageSetFunctions) MaxKey() uint64 {
return math.MaxUint64
}
func (usageSetFunctions) ClearValue(val *usageInfo) {
}
func (usageSetFunctions) Merge(_ platform.FileRange, val1 usageInfo, _ platform.FileRange, val2 usageInfo) (usageInfo, bool) {
return val1, val1 == val2
}
func (usageSetFunctions) Split(_ platform.FileRange, val usageInfo, _ uint64) (usageInfo, usageInfo) {
return val, val
}
|