1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package mm
import (
"gvisor.dev/gvisor/pkg/abi/linux"
"gvisor.dev/gvisor/pkg/context"
"gvisor.dev/gvisor/pkg/refs"
"gvisor.dev/gvisor/pkg/sentry/memmap"
"gvisor.dev/gvisor/pkg/sentry/pgalloc"
"gvisor.dev/gvisor/pkg/sentry/platform"
"gvisor.dev/gvisor/pkg/sentry/usage"
"gvisor.dev/gvisor/pkg/sync"
"gvisor.dev/gvisor/pkg/syserror"
"gvisor.dev/gvisor/pkg/usermem"
)
// aioManager creates and manages asynchronous I/O contexts.
//
// +stateify savable
type aioManager struct {
// mu protects below.
mu sync.Mutex `state:"nosave"`
// aioContexts is the set of asynchronous I/O contexts.
contexts map[uint64]*AIOContext
}
func (a *aioManager) destroy() {
a.mu.Lock()
defer a.mu.Unlock()
for _, ctx := range a.contexts {
ctx.destroy()
}
}
// newAIOContext creates a new context for asynchronous I/O.
//
// Returns false if 'id' is currently in use.
func (a *aioManager) newAIOContext(events uint32, id uint64) bool {
a.mu.Lock()
defer a.mu.Unlock()
if _, ok := a.contexts[id]; ok {
return false
}
a.contexts[id] = &AIOContext{
done: make(chan struct{}, 1),
maxOutstanding: events,
}
return true
}
// destroyAIOContext destroys an asynchronous I/O context.
//
// False is returned if the context does not exist.
func (a *aioManager) destroyAIOContext(id uint64) bool {
a.mu.Lock()
defer a.mu.Unlock()
ctx, ok := a.contexts[id]
if !ok {
return false
}
delete(a.contexts, id)
ctx.destroy()
return true
}
// lookupAIOContext looks up the given context.
//
// Returns false if context does not exist.
func (a *aioManager) lookupAIOContext(id uint64) (*AIOContext, bool) {
a.mu.Lock()
defer a.mu.Unlock()
ctx, ok := a.contexts[id]
return ctx, ok
}
// ioResult is a completed I/O operation.
//
// +stateify savable
type ioResult struct {
data interface{}
ioEntry
}
// AIOContext is a single asynchronous I/O context.
//
// +stateify savable
type AIOContext struct {
// done is the notification channel used for all requests.
done chan struct{} `state:"nosave"`
// mu protects below.
mu sync.Mutex `state:"nosave"`
// results is the set of completed requests.
results ioList
// maxOutstanding is the maximum number of outstanding entries; this value
// is immutable.
maxOutstanding uint32
// outstanding is the number of requests outstanding; this will effectively
// be the number of entries in the result list or that are expected to be
// added to the result list.
outstanding uint32
// dead is set when the context is destroyed.
dead bool `state:"zerovalue"`
}
// destroy marks the context dead.
func (ctx *AIOContext) destroy() {
ctx.mu.Lock()
defer ctx.mu.Unlock()
ctx.dead = true
if ctx.outstanding == 0 {
close(ctx.done)
}
}
// Prepare reserves space for a new request, returning true if available.
// Returns false if the context is busy.
func (ctx *AIOContext) Prepare() bool {
ctx.mu.Lock()
defer ctx.mu.Unlock()
if ctx.outstanding >= ctx.maxOutstanding {
return false
}
ctx.outstanding++
return true
}
// PopRequest pops a completed request if available, this function does not do
// any blocking. Returns false if no request is available.
func (ctx *AIOContext) PopRequest() (interface{}, bool) {
ctx.mu.Lock()
defer ctx.mu.Unlock()
// Is there anything ready?
if e := ctx.results.Front(); e != nil {
ctx.results.Remove(e)
ctx.outstanding--
if ctx.outstanding == 0 && ctx.dead {
close(ctx.done)
}
return e.data, true
}
return nil, false
}
// FinishRequest finishes a pending request. It queues up the data
// and notifies listeners.
func (ctx *AIOContext) FinishRequest(data interface{}) {
ctx.mu.Lock()
defer ctx.mu.Unlock()
// Push to the list and notify opportunistically. The channel notify
// here is guaranteed to be safe because outstanding must be non-zero.
// The done channel is only closed when outstanding reaches zero.
ctx.results.PushBack(&ioResult{data: data})
select {
case ctx.done <- struct{}{}:
default:
}
}
// WaitChannel returns a channel that is notified when an AIO request is
// completed.
//
// The boolean return value indicates whether or not the context is active.
func (ctx *AIOContext) WaitChannel() (chan struct{}, bool) {
ctx.mu.Lock()
defer ctx.mu.Unlock()
if ctx.outstanding == 0 && ctx.dead {
return nil, false
}
return ctx.done, true
}
// aioMappable implements memmap.MappingIdentity and memmap.Mappable for AIO
// ring buffers.
//
// +stateify savable
type aioMappable struct {
refs.AtomicRefCount
mfp pgalloc.MemoryFileProvider
fr platform.FileRange
}
var aioRingBufferSize = uint64(usermem.Addr(linux.AIORingSize).MustRoundUp())
func newAIOMappable(mfp pgalloc.MemoryFileProvider) (*aioMappable, error) {
fr, err := mfp.MemoryFile().Allocate(aioRingBufferSize, usage.Anonymous)
if err != nil {
return nil, err
}
m := aioMappable{mfp: mfp, fr: fr}
m.EnableLeakCheck("mm.aioMappable")
return &m, nil
}
// DecRef implements refs.RefCounter.DecRef.
func (m *aioMappable) DecRef() {
m.AtomicRefCount.DecRefWithDestructor(func() {
m.mfp.MemoryFile().DecRef(m.fr)
})
}
// MappedName implements memmap.MappingIdentity.MappedName.
func (m *aioMappable) MappedName(ctx context.Context) string {
return "[aio]"
}
// DeviceID implements memmap.MappingIdentity.DeviceID.
func (m *aioMappable) DeviceID() uint64 {
return 0
}
// InodeID implements memmap.MappingIdentity.InodeID.
func (m *aioMappable) InodeID() uint64 {
return 0
}
// Msync implements memmap.MappingIdentity.Msync.
func (m *aioMappable) Msync(ctx context.Context, mr memmap.MappableRange) error {
// Linux: aio_ring_fops.fsync == NULL
return syserror.EINVAL
}
// AddMapping implements memmap.Mappable.AddMapping.
func (m *aioMappable) AddMapping(_ context.Context, _ memmap.MappingSpace, ar usermem.AddrRange, offset uint64, _ bool) error {
// Don't allow mappings to be expanded (in Linux, fs/aio.c:aio_ring_mmap()
// sets VM_DONTEXPAND).
if offset != 0 || uint64(ar.Length()) != aioRingBufferSize {
return syserror.EFAULT
}
return nil
}
// RemoveMapping implements memmap.Mappable.RemoveMapping.
func (m *aioMappable) RemoveMapping(context.Context, memmap.MappingSpace, usermem.AddrRange, uint64, bool) {
}
// CopyMapping implements memmap.Mappable.CopyMapping.
func (m *aioMappable) CopyMapping(ctx context.Context, ms memmap.MappingSpace, srcAR, dstAR usermem.AddrRange, offset uint64, _ bool) error {
// Don't allow mappings to be expanded (in Linux, fs/aio.c:aio_ring_mmap()
// sets VM_DONTEXPAND).
if offset != 0 || uint64(dstAR.Length()) != aioRingBufferSize {
return syserror.EFAULT
}
// Require that the mapping correspond to a live AIOContext. Compare
// Linux's fs/aio.c:aio_ring_mremap().
mm, ok := ms.(*MemoryManager)
if !ok {
return syserror.EINVAL
}
am := &mm.aioManager
am.mu.Lock()
defer am.mu.Unlock()
oldID := uint64(srcAR.Start)
aioCtx, ok := am.contexts[oldID]
if !ok {
return syserror.EINVAL
}
aioCtx.mu.Lock()
defer aioCtx.mu.Unlock()
if aioCtx.dead {
return syserror.EINVAL
}
// Use the new ID for the AIOContext.
am.contexts[uint64(dstAR.Start)] = aioCtx
delete(am.contexts, oldID)
return nil
}
// Translate implements memmap.Mappable.Translate.
func (m *aioMappable) Translate(ctx context.Context, required, optional memmap.MappableRange, at usermem.AccessType) ([]memmap.Translation, error) {
var err error
if required.End > m.fr.Length() {
err = &memmap.BusError{syserror.EFAULT}
}
if source := optional.Intersect(memmap.MappableRange{0, m.fr.Length()}); source.Length() != 0 {
return []memmap.Translation{
{
Source: source,
File: m.mfp.MemoryFile(),
Offset: m.fr.Start + source.Start,
Perms: usermem.AnyAccess,
},
}, err
}
return nil, err
}
// InvalidateUnsavable implements memmap.Mappable.InvalidateUnsavable.
func (m *aioMappable) InvalidateUnsavable(ctx context.Context) error {
return nil
}
// NewAIOContext creates a new context for asynchronous I/O.
//
// NewAIOContext is analogous to Linux's fs/aio.c:ioctx_alloc().
func (mm *MemoryManager) NewAIOContext(ctx context.Context, events uint32) (uint64, error) {
// libaio get_ioevents() expects context "handle" to be a valid address.
// libaio peeks inside looking for a magic number. This function allocates
// a page per context and keeps it set to zeroes to ensure it will not
// match AIO_RING_MAGIC and make libaio happy.
m, err := newAIOMappable(mm.mfp)
if err != nil {
return 0, err
}
defer m.DecRef()
addr, err := mm.MMap(ctx, memmap.MMapOpts{
Length: aioRingBufferSize,
MappingIdentity: m,
Mappable: m,
// TODO(fvoznika): Linux does "do_mmap_pgoff(..., PROT_READ |
// PROT_WRITE, ...)" in fs/aio.c:aio_setup_ring(); why do we make this
// mapping read-only?
Perms: usermem.Read,
MaxPerms: usermem.Read,
})
if err != nil {
return 0, err
}
id := uint64(addr)
if !mm.aioManager.newAIOContext(events, id) {
mm.MUnmap(ctx, addr, aioRingBufferSize)
return 0, syserror.EINVAL
}
return id, nil
}
// DestroyAIOContext destroys an asynchronous I/O context. It returns false if
// the context does not exist.
func (mm *MemoryManager) DestroyAIOContext(ctx context.Context, id uint64) bool {
if _, ok := mm.LookupAIOContext(ctx, id); !ok {
return false
}
// Only unmaps after it assured that the address is a valid aio context to
// prevent random memory from been unmapped.
//
// Note: It's possible to unmap this address and map something else into
// the same address. Then it would be unmapping memory that it doesn't own.
// This is, however, the way Linux implements AIO. Keeps the same [weird]
// semantics in case anyone relies on it.
mm.MUnmap(ctx, usermem.Addr(id), aioRingBufferSize)
return mm.aioManager.destroyAIOContext(id)
}
// LookupAIOContext looks up the given context. It returns false if the context
// does not exist.
func (mm *MemoryManager) LookupAIOContext(ctx context.Context, id uint64) (*AIOContext, bool) {
aioCtx, ok := mm.aioManager.lookupAIOContext(id)
if !ok {
return nil, false
}
// Protect against 'ids' that are inaccessible (Linux also reads 4 bytes
// from id).
var buf [4]byte
_, err := mm.CopyIn(ctx, usermem.Addr(id), buf[:], usermem.IOOpts{})
if err != nil {
return nil, false
}
return aioCtx, true
}
|