1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package loader loads an executable file into a MemoryManager.
package loader
import (
"bytes"
"fmt"
"io"
"path"
"strings"
"gvisor.dev/gvisor/pkg/abi"
"gvisor.dev/gvisor/pkg/abi/linux"
"gvisor.dev/gvisor/pkg/cpuid"
"gvisor.dev/gvisor/pkg/rand"
"gvisor.dev/gvisor/pkg/sentry/arch"
"gvisor.dev/gvisor/pkg/sentry/context"
"gvisor.dev/gvisor/pkg/sentry/fs"
"gvisor.dev/gvisor/pkg/sentry/kernel/auth"
"gvisor.dev/gvisor/pkg/sentry/mm"
"gvisor.dev/gvisor/pkg/sentry/usermem"
"gvisor.dev/gvisor/pkg/syserr"
"gvisor.dev/gvisor/pkg/syserror"
)
// LoadArgs holds specifications for an executable file to be loaded.
type LoadArgs struct {
// MemoryManager is the memory manager to load the executable into.
MemoryManager *mm.MemoryManager
// Mounts is the mount namespace in which to look up Filename.
Mounts *fs.MountNamespace
// Root is the root directory under which to look up Filename.
Root *fs.Dirent
// WorkingDirectory is the working directory under which to look up
// Filename.
WorkingDirectory *fs.Dirent
// RemainingTraversals is the maximum number of symlinks to follow to
// resolve Filename. This counter is passed by reference to keep it
// updated throughout the call stack.
RemainingTraversals *uint
// ResolveFinal indicates whether the final link of Filename should be
// resolved, if it is a symlink.
ResolveFinal bool
// Filename is the path for the executable.
Filename string
// File is an open fs.File object of the executable. If File is not
// nil, then File will be loaded and Filename will be ignored.
File *fs.File
// CloseOnExec indicates that the executable (or one of its parent
// directories) was opened with O_CLOEXEC. If the executable is an
// interpreter script, then cause an ENOENT error to occur, since the
// script would otherwise be inaccessible to the interpreter.
CloseOnExec bool
// Argv is the vector of arguments to pass to the executable.
Argv []string
// Envv is the vector of environment variables to pass to the
// executable.
Envv []string
// Features specifies the CPU feature set for the executable.
Features *cpuid.FeatureSet
}
// readFull behaves like io.ReadFull for an *fs.File.
func readFull(ctx context.Context, f *fs.File, dst usermem.IOSequence, offset int64) (int64, error) {
var total int64
for dst.NumBytes() > 0 {
n, err := f.Preadv(ctx, dst, offset+total)
total += n
if err == io.EOF && total != 0 {
return total, io.ErrUnexpectedEOF
} else if err != nil {
return total, err
}
dst = dst.DropFirst64(n)
}
return total, nil
}
// openPath opens args.Filename and checks that it is valid for loading.
//
// openPath returns an *fs.Dirent and *fs.File for args.Filename, which is not
// installed in the Task FDTable. The caller takes ownership of both.
//
// args.Filename must be a readable, executable, regular file.
func openPath(ctx context.Context, args LoadArgs) (*fs.Dirent, *fs.File, error) {
if args.Filename == "" {
ctx.Infof("cannot open empty name")
return nil, nil, syserror.ENOENT
}
var d *fs.Dirent
var err error
if args.ResolveFinal {
d, err = args.Mounts.FindInode(ctx, args.Root, args.WorkingDirectory, args.Filename, args.RemainingTraversals)
} else {
d, err = args.Mounts.FindLink(ctx, args.Root, args.WorkingDirectory, args.Filename, args.RemainingTraversals)
}
if err != nil {
return nil, nil, err
}
// Defer a DecRef for the sake of failure cases.
defer d.DecRef()
if !args.ResolveFinal && fs.IsSymlink(d.Inode.StableAttr) {
return nil, nil, syserror.ELOOP
}
if err := checkPermission(ctx, d); err != nil {
return nil, nil, err
}
// If they claim it's a directory, then make sure.
//
// N.B. we reject directories below, but we must first reject
// non-directories passed as directories.
if strings.HasSuffix(args.Filename, "/") && !fs.IsDir(d.Inode.StableAttr) {
return nil, nil, syserror.ENOTDIR
}
if err := checkIsRegularFile(ctx, d, args.Filename); err != nil {
return nil, nil, err
}
f, err := d.Inode.GetFile(ctx, d, fs.FileFlags{Read: true})
if err != nil {
return nil, nil, err
}
// Defer a DecRef for the sake of failure cases.
defer f.DecRef()
if err := checkPread(ctx, f, args.Filename); err != nil {
return nil, nil, err
}
d.IncRef()
f.IncRef()
return d, f, err
}
// checkFile performs checks on a file to be executed.
func checkFile(ctx context.Context, f *fs.File, filename string) error {
if err := checkPermission(ctx, f.Dirent); err != nil {
return err
}
if err := checkIsRegularFile(ctx, f.Dirent, filename); err != nil {
return err
}
return checkPread(ctx, f, filename)
}
// checkPermission checks whether the file is readable and executable.
func checkPermission(ctx context.Context, d *fs.Dirent) error {
perms := fs.PermMask{
// TODO(gvisor.dev/issue/160): Linux requires only execute
// permission, not read. However, our backing filesystems may
// prevent us from reading the file without read permission.
//
// Additionally, a task with a non-readable executable has
// additional constraints on access via ptrace and procfs.
Read: true,
Execute: true,
}
return d.Inode.CheckPermission(ctx, perms)
}
// checkIsRegularFile prevents us from trying to execute a directory, pipe, etc.
func checkIsRegularFile(ctx context.Context, d *fs.Dirent, filename string) error {
attr := d.Inode.StableAttr
if !fs.IsRegular(attr) {
ctx.Infof("%s is not regular: %v", filename, attr)
return syserror.EACCES
}
return nil
}
// checkPread checks whether we can read the file at arbitrary offsets.
func checkPread(ctx context.Context, f *fs.File, filename string) error {
if !f.Flags().Pread {
ctx.Infof("%s cannot be read at an offset: %+v", filename, f.Flags())
return syserror.EACCES
}
return nil
}
// allocStack allocates and maps a stack in to any available part of the address space.
func allocStack(ctx context.Context, m *mm.MemoryManager, a arch.Context) (*arch.Stack, error) {
ar, err := m.MapStack(ctx)
if err != nil {
return nil, err
}
return &arch.Stack{a, m, ar.End}, nil
}
const (
// maxLoaderAttempts is the maximum number of attempts to try to load
// an interpreter scripts, to prevent loops. 6 (initial + 5 changes) is
// what the Linux kernel allows (fs/exec.c:search_binary_handler).
maxLoaderAttempts = 6
)
// loadExecutable loads an executable that is pointed to by args.File. If nil,
// the path args.Filename is resolved and loaded. If the executable is an
// interpreter script rather than an ELF, the binary of the corresponding
// interpreter will be loaded.
//
// It returns:
// * loadedELF, description of the loaded binary
// * arch.Context matching the binary arch
// * fs.Dirent of the binary file
// * Possibly updated args.Argv
func loadExecutable(ctx context.Context, args LoadArgs) (loadedELF, arch.Context, *fs.Dirent, []string, error) {
for i := 0; i < maxLoaderAttempts; i++ {
var (
d *fs.Dirent
err error
)
if args.File == nil {
d, args.File, err = openPath(ctx, args)
// We will return d in the successful case, but defer a DecRef for the
// sake of intermediate loops and failure cases.
if d != nil {
defer d.DecRef()
}
if args.File != nil {
defer args.File.DecRef()
}
} else {
d = args.File.Dirent
d.IncRef()
defer d.DecRef()
err = checkFile(ctx, args.File, args.Filename)
}
if err != nil {
ctx.Infof("Error opening %s: %v", args.Filename, err)
return loadedELF{}, nil, nil, nil, err
}
// Check the header. Is this an ELF or interpreter script?
var hdr [4]uint8
// N.B. We assume that reading from a regular file cannot block.
_, err = readFull(ctx, args.File, usermem.BytesIOSequence(hdr[:]), 0)
// Allow unexpected EOF, as a valid executable could be only three bytes
// (e.g., #!a).
if err != nil && err != io.ErrUnexpectedEOF {
if err == io.EOF {
err = syserror.ENOEXEC
}
return loadedELF{}, nil, nil, nil, err
}
switch {
case bytes.Equal(hdr[:], []byte(elfMagic)):
loaded, ac, err := loadELF(ctx, args)
if err != nil {
ctx.Infof("Error loading ELF: %v", err)
return loadedELF{}, nil, nil, nil, err
}
// An ELF is always terminal. Hold on to d.
d.IncRef()
return loaded, ac, d, args.Argv, err
case bytes.Equal(hdr[:2], []byte(interpreterScriptMagic)):
if args.CloseOnExec {
return loadedELF{}, nil, nil, nil, syserror.ENOENT
}
args.Filename, args.Argv, err = parseInterpreterScript(ctx, args.Filename, args.File, args.Argv)
if err != nil {
ctx.Infof("Error loading interpreter script: %v", err)
return loadedELF{}, nil, nil, nil, err
}
// Refresh the traversal limit for the interpreter.
*args.RemainingTraversals = linux.MaxSymlinkTraversals
default:
ctx.Infof("Unknown magic: %v", hdr)
return loadedELF{}, nil, nil, nil, syserror.ENOEXEC
}
// Set to nil in case we loop on a Interpreter Script.
args.File = nil
}
return loadedELF{}, nil, nil, nil, syserror.ELOOP
}
// Load loads args.File into a MemoryManager. If args.File is nil, the path
// args.Filename is resolved and loaded instead.
//
// If Load returns ErrSwitchFile it should be called again with the returned
// path and argv.
//
// Preconditions:
// * The Task MemoryManager is empty.
// * Load is called on the Task goroutine.
func Load(ctx context.Context, args LoadArgs, extraAuxv []arch.AuxEntry, vdso *VDSO) (abi.OS, arch.Context, string, *syserr.Error) {
// Load the executable itself.
loaded, ac, d, newArgv, err := loadExecutable(ctx, args)
if err != nil {
return 0, nil, "", syserr.NewDynamic(fmt.Sprintf("Failed to load %s: %v", args.Filename, err), syserr.FromError(err).ToLinux())
}
defer d.DecRef()
// Load the VDSO.
vdsoAddr, err := loadVDSO(ctx, args.MemoryManager, vdso, loaded)
if err != nil {
return 0, nil, "", syserr.NewDynamic(fmt.Sprintf("Error loading VDSO: %v", err), syserr.FromError(err).ToLinux())
}
// Setup the heap. brk starts at the next page after the end of the
// executable. Userspace can assume that the remainer of the page after
// loaded.end is available for its use.
e, ok := loaded.end.RoundUp()
if !ok {
return 0, nil, "", syserr.NewDynamic(fmt.Sprintf("brk overflows: %#x", loaded.end), linux.ENOEXEC)
}
args.MemoryManager.BrkSetup(ctx, e)
// Allocate our stack.
stack, err := allocStack(ctx, args.MemoryManager, ac)
if err != nil {
return 0, nil, "", syserr.NewDynamic(fmt.Sprintf("Failed to allocate stack: %v", err), syserr.FromError(err).ToLinux())
}
// Push the original filename to the stack, for AT_EXECFN.
execfn, err := stack.Push(args.Filename)
if err != nil {
return 0, nil, "", syserr.NewDynamic(fmt.Sprintf("Failed to push exec filename: %v", err), syserr.FromError(err).ToLinux())
}
// Push 16 random bytes on the stack which AT_RANDOM will point to.
var b [16]byte
if _, err := rand.Read(b[:]); err != nil {
return 0, nil, "", syserr.NewDynamic(fmt.Sprintf("Failed to read random bytes: %v", err), syserr.FromError(err).ToLinux())
}
random, err := stack.Push(b)
if err != nil {
return 0, nil, "", syserr.NewDynamic(fmt.Sprintf("Failed to push random bytes: %v", err), syserr.FromError(err).ToLinux())
}
c := auth.CredentialsFromContext(ctx)
// Add generic auxv entries.
auxv := append(loaded.auxv, arch.Auxv{
arch.AuxEntry{linux.AT_UID, usermem.Addr(c.RealKUID.In(c.UserNamespace).OrOverflow())},
arch.AuxEntry{linux.AT_EUID, usermem.Addr(c.EffectiveKUID.In(c.UserNamespace).OrOverflow())},
arch.AuxEntry{linux.AT_GID, usermem.Addr(c.RealKGID.In(c.UserNamespace).OrOverflow())},
arch.AuxEntry{linux.AT_EGID, usermem.Addr(c.EffectiveKGID.In(c.UserNamespace).OrOverflow())},
// The conditions that require AT_SECURE = 1 never arise. See
// kernel.Task.updateCredsForExecLocked.
arch.AuxEntry{linux.AT_SECURE, 0},
arch.AuxEntry{linux.AT_CLKTCK, linux.CLOCKS_PER_SEC},
arch.AuxEntry{linux.AT_EXECFN, execfn},
arch.AuxEntry{linux.AT_RANDOM, random},
arch.AuxEntry{linux.AT_PAGESZ, usermem.PageSize},
arch.AuxEntry{linux.AT_SYSINFO_EHDR, vdsoAddr},
}...)
auxv = append(auxv, extraAuxv...)
sl, err := stack.Load(newArgv, args.Envv, auxv)
if err != nil {
return 0, nil, "", syserr.NewDynamic(fmt.Sprintf("Failed to load stack: %v", err), syserr.FromError(err).ToLinux())
}
m := args.MemoryManager
m.SetArgvStart(sl.ArgvStart)
m.SetArgvEnd(sl.ArgvEnd)
m.SetEnvvStart(sl.EnvvStart)
m.SetEnvvEnd(sl.EnvvEnd)
m.SetAuxv(auxv)
m.SetExecutable(d)
ac.SetIP(uintptr(loaded.entry))
ac.SetStack(uintptr(stack.Bottom))
name := path.Base(args.Filename)
if len(name) > linux.TASK_COMM_LEN-1 {
name = name[:linux.TASK_COMM_LEN-1]
}
return loaded.os, ac, name, nil
}
|