1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package loader
import (
"bytes"
"debug/elf"
"fmt"
"io"
"gvisor.dev/gvisor/pkg/abi"
"gvisor.dev/gvisor/pkg/abi/linux"
"gvisor.dev/gvisor/pkg/binary"
"gvisor.dev/gvisor/pkg/cpuid"
"gvisor.dev/gvisor/pkg/log"
"gvisor.dev/gvisor/pkg/sentry/arch"
"gvisor.dev/gvisor/pkg/sentry/context"
"gvisor.dev/gvisor/pkg/sentry/fs"
"gvisor.dev/gvisor/pkg/sentry/limits"
"gvisor.dev/gvisor/pkg/sentry/memmap"
"gvisor.dev/gvisor/pkg/sentry/mm"
"gvisor.dev/gvisor/pkg/sentry/usermem"
"gvisor.dev/gvisor/pkg/syserror"
)
const (
// elfMagic identifies an ELF file.
elfMagic = "\x7fELF"
// maxTotalPhdrSize is the maximum combined size of all program
// headers. Linux limits this to one page.
maxTotalPhdrSize = usermem.PageSize
)
var (
// header64Size is the size of elf.Header64.
header64Size = int(binary.Size(elf.Header64{}))
// Prog64Size is the size of elf.Prog64.
prog64Size = int(binary.Size(elf.Prog64{}))
)
func progFlagsAsPerms(f elf.ProgFlag) usermem.AccessType {
var p usermem.AccessType
if f&elf.PF_R == elf.PF_R {
p.Read = true
}
if f&elf.PF_W == elf.PF_W {
p.Write = true
}
if f&elf.PF_X == elf.PF_X {
p.Execute = true
}
return p
}
// elfInfo contains the metadata needed to load an ELF binary.
type elfInfo struct {
// os is the target OS of the ELF.
os abi.OS
// arch is the target architecture of the ELF.
arch arch.Arch
// entry is the program entry point.
entry usermem.Addr
// phdrs are the program headers.
phdrs []elf.ProgHeader
// phdrSize is the size of a single program header in the ELF.
phdrSize int
// phdrOff is the offset of the program headers in the file.
phdrOff uint64
// sharedObject is true if the ELF represents a shared object.
sharedObject bool
}
// parseHeader parse the ELF header, verifying that this is a supported ELF
// file and returning the ELF program headers.
//
// This is similar to elf.NewFile, except that it is more strict about what it
// accepts from the ELF, and it doesn't parse unnecessary parts of the file.
//
// ctx may be nil if f does not need it.
func parseHeader(ctx context.Context, f *fs.File) (elfInfo, error) {
// Check ident first; it will tell us the endianness of the rest of the
// structs.
var ident [elf.EI_NIDENT]byte
_, err := readFull(ctx, f, usermem.BytesIOSequence(ident[:]), 0)
if err != nil {
log.Infof("Error reading ELF ident: %v", err)
// The entire ident array always exists.
if err == io.EOF || err == io.ErrUnexpectedEOF {
err = syserror.ENOEXEC
}
return elfInfo{}, err
}
// Only some callers pre-check the ELF magic.
if !bytes.Equal(ident[:len(elfMagic)], []byte(elfMagic)) {
log.Infof("File is not an ELF")
return elfInfo{}, syserror.ENOEXEC
}
// We only support 64-bit, little endian binaries
if class := elf.Class(ident[elf.EI_CLASS]); class != elf.ELFCLASS64 {
log.Infof("Unsupported ELF class: %v", class)
return elfInfo{}, syserror.ENOEXEC
}
if endian := elf.Data(ident[elf.EI_DATA]); endian != elf.ELFDATA2LSB {
log.Infof("Unsupported ELF endianness: %v", endian)
return elfInfo{}, syserror.ENOEXEC
}
byteOrder := binary.LittleEndian
if version := elf.Version(ident[elf.EI_VERSION]); version != elf.EV_CURRENT {
log.Infof("Unsupported ELF version: %v", version)
return elfInfo{}, syserror.ENOEXEC
}
// EI_OSABI is ignored by Linux, which is the only OS supported.
os := abi.Linux
var hdr elf.Header64
hdrBuf := make([]byte, header64Size)
_, err = readFull(ctx, f, usermem.BytesIOSequence(hdrBuf), 0)
if err != nil {
log.Infof("Error reading ELF header: %v", err)
// The entire header always exists.
if err == io.EOF || err == io.ErrUnexpectedEOF {
err = syserror.ENOEXEC
}
return elfInfo{}, err
}
binary.Unmarshal(hdrBuf, byteOrder, &hdr)
// We support amd64 and arm64.
var a arch.Arch
switch machine := elf.Machine(hdr.Machine); machine {
case elf.EM_X86_64:
a = arch.AMD64
case elf.EM_AARCH64:
a = arch.ARM64
default:
log.Infof("Unsupported ELF machine %d", machine)
return elfInfo{}, syserror.ENOEXEC
}
var sharedObject bool
elfType := elf.Type(hdr.Type)
switch elfType {
case elf.ET_EXEC:
sharedObject = false
case elf.ET_DYN:
sharedObject = true
default:
log.Infof("Unsupported ELF type %v", elfType)
return elfInfo{}, syserror.ENOEXEC
}
if int(hdr.Phentsize) != prog64Size {
log.Infof("Unsupported phdr size %d", hdr.Phentsize)
return elfInfo{}, syserror.ENOEXEC
}
totalPhdrSize := prog64Size * int(hdr.Phnum)
if totalPhdrSize < prog64Size {
log.Warningf("No phdrs or total phdr size overflows: prog64Size: %d phnum: %d", prog64Size, int(hdr.Phnum))
return elfInfo{}, syserror.ENOEXEC
}
if totalPhdrSize > maxTotalPhdrSize {
log.Infof("Too many phdrs (%d): total size %d > %d", hdr.Phnum, totalPhdrSize, maxTotalPhdrSize)
return elfInfo{}, syserror.ENOEXEC
}
phdrBuf := make([]byte, totalPhdrSize)
_, err = readFull(ctx, f, usermem.BytesIOSequence(phdrBuf), int64(hdr.Phoff))
if err != nil {
log.Infof("Error reading ELF phdrs: %v", err)
// If phdrs were specified, they should all exist.
if err == io.EOF || err == io.ErrUnexpectedEOF {
err = syserror.ENOEXEC
}
return elfInfo{}, err
}
phdrs := make([]elf.ProgHeader, hdr.Phnum)
for i := range phdrs {
var prog64 elf.Prog64
binary.Unmarshal(phdrBuf[:prog64Size], byteOrder, &prog64)
phdrBuf = phdrBuf[prog64Size:]
phdrs[i] = elf.ProgHeader{
Type: elf.ProgType(prog64.Type),
Flags: elf.ProgFlag(prog64.Flags),
Off: prog64.Off,
Vaddr: prog64.Vaddr,
Paddr: prog64.Paddr,
Filesz: prog64.Filesz,
Memsz: prog64.Memsz,
Align: prog64.Align,
}
}
return elfInfo{
os: os,
arch: a,
entry: usermem.Addr(hdr.Entry),
phdrs: phdrs,
phdrOff: hdr.Phoff,
phdrSize: prog64Size,
sharedObject: sharedObject,
}, nil
}
// mapSegment maps a phdr into the Task. offset is the offset to apply to
// phdr.Vaddr.
func mapSegment(ctx context.Context, m *mm.MemoryManager, f *fs.File, phdr *elf.ProgHeader, offset usermem.Addr) error {
// We must make a page-aligned mapping.
adjust := usermem.Addr(phdr.Vaddr).PageOffset()
addr, ok := offset.AddLength(phdr.Vaddr)
if !ok {
// If offset != 0 we should have ensured this would fit.
ctx.Warningf("Computed segment load address overflows: %#x + %#x", phdr.Vaddr, offset)
return syserror.ENOEXEC
}
addr -= usermem.Addr(adjust)
fileSize := phdr.Filesz + adjust
if fileSize < phdr.Filesz {
ctx.Infof("Computed segment file size overflows: %#x + %#x", phdr.Filesz, adjust)
return syserror.ENOEXEC
}
ms, ok := usermem.Addr(fileSize).RoundUp()
if !ok {
ctx.Infof("fileSize %#x too large", fileSize)
return syserror.ENOEXEC
}
mapSize := uint64(ms)
if mapSize > 0 {
// This must result in a page-aligned offset. i.e., the original
// phdr.Off must have the same alignment as phdr.Vaddr. If that is not
// true, MMap will reject the mapping.
fileOffset := phdr.Off - adjust
prot := progFlagsAsPerms(phdr.Flags)
mopts := memmap.MMapOpts{
Length: mapSize,
Offset: fileOffset,
Addr: addr,
Fixed: true,
// Linux will happily allow conflicting segments to map over
// one another.
Unmap: true,
Private: true,
Perms: prot,
MaxPerms: usermem.AnyAccess,
}
defer func() {
if mopts.MappingIdentity != nil {
mopts.MappingIdentity.DecRef()
}
}()
if err := f.ConfigureMMap(ctx, &mopts); err != nil {
ctx.Infof("File is not memory-mappable: %v", err)
return err
}
if _, err := m.MMap(ctx, mopts); err != nil {
ctx.Infof("Error mapping PT_LOAD segment %+v at %#x: %v", phdr, addr, err)
return err
}
// We need to clear the end of the last page that exceeds fileSize so
// we don't map part of the file beyond fileSize.
//
// Note that Linux *does not* clear the portion of the first page
// before phdr.Off.
if mapSize > fileSize {
zeroAddr, ok := addr.AddLength(fileSize)
if !ok {
panic(fmt.Sprintf("successfully mmaped address overflows? %#x + %#x", addr, fileSize))
}
zeroSize := int64(mapSize - fileSize)
if zeroSize < 0 {
panic(fmt.Sprintf("zeroSize too big? %#x", uint64(zeroSize)))
}
if _, err := m.ZeroOut(ctx, zeroAddr, zeroSize, usermem.IOOpts{IgnorePermissions: true}); err != nil {
ctx.Warningf("Failed to zero end of page [%#x, %#x): %v", zeroAddr, zeroAddr+usermem.Addr(zeroSize), err)
return err
}
}
}
memSize := phdr.Memsz + adjust
if memSize < phdr.Memsz {
ctx.Infof("Computed segment mem size overflows: %#x + %#x", phdr.Memsz, adjust)
return syserror.ENOEXEC
}
// Allocate more anonymous pages if necessary.
if mapSize < memSize {
anonAddr, ok := addr.AddLength(mapSize)
if !ok {
panic(fmt.Sprintf("anonymous memory doesn't fit in pre-sized range? %#x + %#x", addr, mapSize))
}
anonSize, ok := usermem.Addr(memSize - mapSize).RoundUp()
if !ok {
ctx.Infof("extra anon pages too large: %#x", memSize-mapSize)
return syserror.ENOEXEC
}
// N.B. Linux uses vm_brk_flags to map these pages, which only
// honors the X bit, always mapping at least RW. ignoring These
// pages are not included in the final brk region.
prot := usermem.ReadWrite
if phdr.Flags&elf.PF_X == elf.PF_X {
prot.Execute = true
}
if _, err := m.MMap(ctx, memmap.MMapOpts{
Length: uint64(anonSize),
Addr: anonAddr,
// Fixed without Unmap will fail the mmap if something is
// already at addr.
Fixed: true,
Private: true,
Perms: prot,
MaxPerms: usermem.AnyAccess,
}); err != nil {
ctx.Infof("Error mapping PT_LOAD segment %v anonymous memory: %v", phdr, err)
return err
}
}
return nil
}
// loadedELF describes an ELF that has been successfully loaded.
type loadedELF struct {
// os is the target OS of the ELF.
os abi.OS
// arch is the target architecture of the ELF.
arch arch.Arch
// entry is the entry point of the ELF.
entry usermem.Addr
// start is the end of the ELF.
start usermem.Addr
// end is the end of the ELF.
end usermem.Addr
// interpter is the path to the ELF interpreter.
interpreter string
// phdrAddr is the address of the ELF program headers.
phdrAddr usermem.Addr
// phdrSize is the size of a single program header in the ELF.
phdrSize int
// phdrNum is the number of program headers.
phdrNum int
// auxv contains a subset of ELF-specific auxiliary vector entries:
// * AT_PHDR
// * AT_PHENT
// * AT_PHNUM
// * AT_BASE
// * AT_ENTRY
auxv arch.Auxv
}
// loadParsedELF loads f into mm.
//
// info is the parsed elfInfo from the header.
//
// It does not load the ELF interpreter, or return any auxv entries.
//
// Preconditions:
// * f is an ELF file
func loadParsedELF(ctx context.Context, m *mm.MemoryManager, f *fs.File, info elfInfo, sharedLoadOffset usermem.Addr) (loadedELF, error) {
first := true
var start, end usermem.Addr
var interpreter string
for _, phdr := range info.phdrs {
switch phdr.Type {
case elf.PT_LOAD:
vaddr := usermem.Addr(phdr.Vaddr)
if first {
first = false
start = vaddr
}
if vaddr < end {
ctx.Infof("PT_LOAD headers out-of-order. %#x < %#x", vaddr, end)
return loadedELF{}, syserror.ENOEXEC
}
var ok bool
end, ok = vaddr.AddLength(phdr.Memsz)
if !ok {
ctx.Infof("PT_LOAD header size overflows. %#x + %#x", vaddr, phdr.Memsz)
return loadedELF{}, syserror.ENOEXEC
}
case elf.PT_INTERP:
if phdr.Filesz < 2 {
ctx.Infof("PT_INTERP path too small: %v", phdr.Filesz)
return loadedELF{}, syserror.ENOEXEC
}
if phdr.Filesz > linux.PATH_MAX {
ctx.Infof("PT_INTERP path too big: %v", phdr.Filesz)
return loadedELF{}, syserror.ENOEXEC
}
path := make([]byte, phdr.Filesz)
_, err := readFull(ctx, f, usermem.BytesIOSequence(path), int64(phdr.Off))
if err != nil {
// If an interpreter was specified, it should exist.
ctx.Infof("Error reading PT_INTERP path: %v", err)
return loadedELF{}, syserror.ENOEXEC
}
if path[len(path)-1] != 0 {
ctx.Infof("PT_INTERP path not NUL-terminated: %v", path)
return loadedELF{}, syserror.ENOEXEC
}
// Strip NUL-terminator and everything beyond from
// string. Note that there may be a NUL-terminator
// before len(path)-1.
interpreter = string(path[:bytes.IndexByte(path, '\x00')])
if interpreter == "" {
// Linux actually attempts to open_exec("\0").
// open_exec -> do_open_execat fails to check
// that name != '\0' before calling
// do_filp_open, which thus opens the working
// directory. do_open_execat returns EACCES
// because the directory is not a regular file.
//
// We bypass that nonsense and simply
// short-circuit with EACCES. Those this does
// mean that there may be some edge cases where
// the open path would return a different
// error.
ctx.Infof("PT_INTERP path is empty: %v", path)
return loadedELF{}, syserror.EACCES
}
}
}
// Shared objects don't have fixed load addresses. We need to pick a
// base address big enough to fit all segments, so we first create a
// mapping for the total size just to find a region that is big enough.
//
// It is safe to unmap it immediately without racing with another mapping
// because we are the only one in control of the MemoryManager.
//
// Note that the vaddr of the first PT_LOAD segment is ignored when
// choosing the load address (even if it is non-zero). The vaddr does
// become an offset from that load address.
var offset usermem.Addr
if info.sharedObject {
totalSize := end - start
totalSize, ok := totalSize.RoundUp()
if !ok {
ctx.Infof("ELF PT_LOAD segments too big")
return loadedELF{}, syserror.ENOEXEC
}
var err error
offset, err = m.MMap(ctx, memmap.MMapOpts{
Length: uint64(totalSize),
Addr: sharedLoadOffset,
Private: true,
})
if err != nil {
ctx.Infof("Error allocating address space for shared object: %v", err)
return loadedELF{}, err
}
if err := m.MUnmap(ctx, offset, uint64(totalSize)); err != nil {
panic(fmt.Sprintf("Failed to unmap base address: %v", err))
}
start, ok = start.AddLength(uint64(offset))
if !ok {
panic(fmt.Sprintf("Start %#x + offset %#x overflows?", start, offset))
}
end, ok = end.AddLength(uint64(offset))
if !ok {
panic(fmt.Sprintf("End %#x + offset %#x overflows?", end, offset))
}
info.entry, ok = info.entry.AddLength(uint64(offset))
if !ok {
ctx.Infof("Entrypoint %#x + offset %#x overflows? Is the entrypoint within a segment?", info.entry, offset)
return loadedELF{}, err
}
}
// Map PT_LOAD segments.
for _, phdr := range info.phdrs {
switch phdr.Type {
case elf.PT_LOAD:
if phdr.Memsz == 0 {
// No need to load segments with size 0, but
// they exist in some binaries.
continue
}
if err := mapSegment(ctx, m, f, &phdr, offset); err != nil {
ctx.Infof("Failed to map PT_LOAD segment: %+v", phdr)
return loadedELF{}, err
}
}
}
// This assumes that the first segment contains the ELF headers. This
// may not be true in a malformed ELF, but Linux makes the same
// assumption.
phdrAddr, ok := start.AddLength(info.phdrOff)
if !ok {
ctx.Warningf("ELF start address %#x + phdr offset %#x overflows", start, info.phdrOff)
phdrAddr = 0
}
return loadedELF{
os: info.os,
arch: info.arch,
entry: info.entry,
start: start,
end: end,
interpreter: interpreter,
phdrAddr: phdrAddr,
phdrSize: info.phdrSize,
phdrNum: len(info.phdrs),
}, nil
}
// loadInitialELF loads f into mm.
//
// It creates an arch.Context for the ELF and prepares the mm for this arch.
//
// It does not load the ELF interpreter, or return any auxv entries.
//
// Preconditions:
// * f is an ELF file
// * f is the first ELF loaded into m
func loadInitialELF(ctx context.Context, m *mm.MemoryManager, fs *cpuid.FeatureSet, f *fs.File) (loadedELF, arch.Context, error) {
info, err := parseHeader(ctx, f)
if err != nil {
ctx.Infof("Failed to parse initial ELF: %v", err)
return loadedELF{}, nil, err
}
// Check Image Compatibility.
if arch.Host != info.arch {
ctx.Warningf("Found mismatch for platform %s with ELF type %s", arch.Host.String(), info.arch.String())
return loadedELF{}, nil, syserror.ENOEXEC
}
// Create the arch.Context now so we can prepare the mmap layout before
// mapping anything.
ac := arch.New(info.arch, fs)
l, err := m.SetMmapLayout(ac, limits.FromContext(ctx))
if err != nil {
ctx.Warningf("Failed to set mmap layout: %v", err)
return loadedELF{}, nil, err
}
// PIELoadAddress tries to move the ELF out of the way of the default
// mmap base to ensure that the initial brk has sufficient space to
// grow.
le, err := loadParsedELF(ctx, m, f, info, ac.PIELoadAddress(l))
return le, ac, err
}
// loadInterpreterELF loads f into mm.
//
// The interpreter must be for the same OS/Arch as the initial ELF.
//
// It does not return any auxv entries.
//
// Preconditions:
// * f is an ELF file
func loadInterpreterELF(ctx context.Context, m *mm.MemoryManager, f *fs.File, initial loadedELF) (loadedELF, error) {
info, err := parseHeader(ctx, f)
if err != nil {
if err == syserror.ENOEXEC {
// Bad interpreter.
err = syserror.ELIBBAD
}
return loadedELF{}, err
}
if info.os != initial.os {
ctx.Infof("Initial ELF OS %v and interpreter ELF OS %v differ", initial.os, info.os)
return loadedELF{}, syserror.ELIBBAD
}
if info.arch != initial.arch {
ctx.Infof("Initial ELF arch %v and interpreter ELF arch %v differ", initial.arch, info.arch)
return loadedELF{}, syserror.ELIBBAD
}
// The interpreter is not given a load offset, as its location does not
// affect brk.
return loadParsedELF(ctx, m, f, info, 0)
}
// loadELF loads args.File into the Task address space.
//
// If loadELF returns ErrSwitchFile it should be called again with the returned
// path and argv.
//
// Preconditions:
// * args.File is an ELF file
func loadELF(ctx context.Context, args LoadArgs) (loadedELF, arch.Context, error) {
bin, ac, err := loadInitialELF(ctx, args.MemoryManager, args.Features, args.File)
if err != nil {
ctx.Infof("Error loading binary: %v", err)
return loadedELF{}, nil, err
}
var interp loadedELF
if bin.interpreter != "" {
// Even if we do not allow the final link of the script to be
// resolved, the interpreter should still be resolved if it is
// a symlink.
args.ResolveFinal = true
args.Filename = bin.interpreter
d, i, err := openPath(ctx, args)
if err != nil {
ctx.Infof("Error opening interpreter %s: %v", bin.interpreter, err)
return loadedELF{}, nil, err
}
defer i.DecRef()
// We don't need the Dirent.
d.DecRef()
interp, err = loadInterpreterELF(ctx, args.MemoryManager, i, bin)
if err != nil {
ctx.Infof("Error loading interpreter: %v", err)
return loadedELF{}, nil, err
}
if interp.interpreter != "" {
// No recursive interpreters!
ctx.Infof("Interpreter requires an interpreter")
return loadedELF{}, nil, syserror.ENOEXEC
}
}
// ELF-specific auxv entries.
bin.auxv = arch.Auxv{
arch.AuxEntry{linux.AT_PHDR, bin.phdrAddr},
arch.AuxEntry{linux.AT_PHENT, usermem.Addr(bin.phdrSize)},
arch.AuxEntry{linux.AT_PHNUM, usermem.Addr(bin.phdrNum)},
arch.AuxEntry{linux.AT_ENTRY, bin.entry},
}
if bin.interpreter != "" {
bin.auxv = append(bin.auxv, arch.AuxEntry{linux.AT_BASE, interp.start})
// Start in the interpreter.
// N.B. AT_ENTRY above contains the *original* entry point.
bin.entry = interp.entry
} else {
// Always add AT_BASE even if there is no interpreter.
bin.auxv = append(bin.auxv, arch.AuxEntry{linux.AT_BASE, 0})
}
return bin, ac, nil
}
|