1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package kernel
import (
"fmt"
"gvisor.dev/gvisor/pkg/abi/linux"
"gvisor.dev/gvisor/pkg/sentry/hostcpu"
"gvisor.dev/gvisor/pkg/syserror"
"gvisor.dev/gvisor/pkg/usermem"
)
// Restartable sequences.
//
// We support two different APIs for restartable sequences.
//
// 1. The upstream interface added in v4.18.
// 2. The interface described in https://lwn.net/Articles/650333/.
//
// Throughout this file and other parts of the kernel, the latter is referred
// to as "old rseq". This interface was never merged upstream, but is supported
// for a limited set of applications that use it regardless.
// OldRSeqCriticalRegion describes an old rseq critical region.
//
// +stateify savable
type OldRSeqCriticalRegion struct {
// When a task in this thread group has its CPU preempted (as defined by
// platform.ErrContextCPUPreempted) or has a signal delivered to an
// application handler while its instruction pointer is in CriticalSection,
// set the instruction pointer to Restart and application register r10 (on
// amd64) to the former instruction pointer.
CriticalSection usermem.AddrRange
Restart usermem.Addr
}
// RSeqAvailable returns true if t supports (old and new) restartable sequences.
func (t *Task) RSeqAvailable() bool {
return t.k.useHostCores && t.k.Platform.DetectsCPUPreemption()
}
// SetRSeq registers addr as this thread's rseq structure.
//
// Preconditions: The caller must be running on the task goroutine.
func (t *Task) SetRSeq(addr usermem.Addr, length, signature uint32) error {
if t.rseqAddr != 0 {
if t.rseqAddr != addr {
return syserror.EINVAL
}
if t.rseqSignature != signature {
return syserror.EINVAL
}
return syserror.EBUSY
}
// rseq must be aligned and correctly sized.
if addr&(linux.AlignOfRSeq-1) != 0 {
return syserror.EINVAL
}
if length != linux.SizeOfRSeq {
return syserror.EINVAL
}
if _, ok := t.MemoryManager().CheckIORange(addr, linux.SizeOfRSeq); !ok {
return syserror.EFAULT
}
t.rseqAddr = addr
t.rseqSignature = signature
// Initialize the CPUID.
//
// Linux implicitly does this on return from userspace, where failure
// would cause SIGSEGV.
if err := t.rseqUpdateCPU(); err != nil {
t.rseqAddr = 0
t.rseqSignature = 0
t.Debugf("Failed to copy CPU to %#x for rseq: %v", t.rseqAddr, err)
t.forceSignal(linux.SIGSEGV, false /* unconditional */)
t.SendSignal(SignalInfoPriv(linux.SIGSEGV))
return syserror.EFAULT
}
return nil
}
// ClearRSeq unregisters addr as this thread's rseq structure.
//
// Preconditions: The caller must be running on the task goroutine.
func (t *Task) ClearRSeq(addr usermem.Addr, length, signature uint32) error {
if t.rseqAddr == 0 {
return syserror.EINVAL
}
if t.rseqAddr != addr {
return syserror.EINVAL
}
if length != linux.SizeOfRSeq {
return syserror.EINVAL
}
if t.rseqSignature != signature {
return syserror.EPERM
}
if err := t.rseqClearCPU(); err != nil {
return err
}
t.rseqAddr = 0
t.rseqSignature = 0
if t.oldRSeqCPUAddr == 0 {
// rseqCPU no longer needed.
t.rseqCPU = -1
}
return nil
}
// OldRSeqCriticalRegion returns a copy of t's thread group's current
// old restartable sequence.
func (t *Task) OldRSeqCriticalRegion() OldRSeqCriticalRegion {
return *t.tg.oldRSeqCritical.Load().(*OldRSeqCriticalRegion)
}
// SetOldRSeqCriticalRegion replaces t's thread group's old restartable
// sequence.
//
// Preconditions: t.RSeqAvailable() == true.
func (t *Task) SetOldRSeqCriticalRegion(r OldRSeqCriticalRegion) error {
// These checks are somewhat more lenient than in Linux, which (bizarrely)
// requires r.CriticalSection to be non-empty and r.Restart to be
// outside of r.CriticalSection, even if r.CriticalSection.Start == 0
// (which disables the critical region).
if r.CriticalSection.Start == 0 {
r.CriticalSection.End = 0
r.Restart = 0
t.tg.oldRSeqCritical.Store(&r)
return nil
}
if r.CriticalSection.Start >= r.CriticalSection.End {
return syserror.EINVAL
}
if r.CriticalSection.Contains(r.Restart) {
return syserror.EINVAL
}
// TODO(jamieliu): check that r.CriticalSection and r.Restart are in
// the application address range, for consistency with Linux.
t.tg.oldRSeqCritical.Store(&r)
return nil
}
// OldRSeqCPUAddr returns the address that old rseq will keep updated with t's
// CPU number.
//
// Preconditions: The caller must be running on the task goroutine.
func (t *Task) OldRSeqCPUAddr() usermem.Addr {
return t.oldRSeqCPUAddr
}
// SetOldRSeqCPUAddr replaces the address that old rseq will keep updated with
// t's CPU number.
//
// Preconditions: t.RSeqAvailable() == true. The caller must be running on the
// task goroutine. t's AddressSpace must be active.
func (t *Task) SetOldRSeqCPUAddr(addr usermem.Addr) error {
t.oldRSeqCPUAddr = addr
// Check that addr is writable.
//
// N.B. rseqUpdateCPU may fail on a bad t.rseqAddr as well. That's
// unfortunate, but unlikely in a correct program.
if err := t.rseqUpdateCPU(); err != nil {
t.oldRSeqCPUAddr = 0
return syserror.EINVAL // yes, EINVAL, not err or EFAULT
}
return nil
}
// Preconditions: The caller must be running on the task goroutine. t's
// AddressSpace must be active.
func (t *Task) rseqUpdateCPU() error {
if t.rseqAddr == 0 && t.oldRSeqCPUAddr == 0 {
t.rseqCPU = -1
return nil
}
t.rseqCPU = int32(hostcpu.GetCPU())
// Update both CPUs, even if one fails.
rerr := t.rseqCopyOutCPU()
oerr := t.oldRSeqCopyOutCPU()
if rerr != nil {
return rerr
}
return oerr
}
// Preconditions: The caller must be running on the task goroutine. t's
// AddressSpace must be active.
func (t *Task) oldRSeqCopyOutCPU() error {
if t.oldRSeqCPUAddr == 0 {
return nil
}
buf := t.CopyScratchBuffer(4)
usermem.ByteOrder.PutUint32(buf, uint32(t.rseqCPU))
_, err := t.CopyOutBytes(t.oldRSeqCPUAddr, buf)
return err
}
// Preconditions: The caller must be running on the task goroutine. t's
// AddressSpace must be active.
func (t *Task) rseqCopyOutCPU() error {
if t.rseqAddr == 0 {
return nil
}
buf := t.CopyScratchBuffer(8)
// CPUIDStart and CPUID are the first two fields in linux.RSeq.
usermem.ByteOrder.PutUint32(buf, uint32(t.rseqCPU)) // CPUIDStart
usermem.ByteOrder.PutUint32(buf[4:], uint32(t.rseqCPU)) // CPUID
// N.B. This write is not atomic, but since this occurs on the task
// goroutine then as long as userspace uses a single-instruction read
// it can't see an invalid value.
_, err := t.CopyOutBytes(t.rseqAddr, buf)
return err
}
// Preconditions: The caller must be running on the task goroutine. t's
// AddressSpace must be active.
func (t *Task) rseqClearCPU() error {
buf := t.CopyScratchBuffer(8)
// CPUIDStart and CPUID are the first two fields in linux.RSeq.
usermem.ByteOrder.PutUint32(buf, 0) // CPUIDStart
usermem.ByteOrder.PutUint32(buf[4:], linux.RSEQ_CPU_ID_UNINITIALIZED) // CPUID
// N.B. This write is not atomic, but since this occurs on the task
// goroutine then as long as userspace uses a single-instruction read
// it can't see an invalid value.
_, err := t.CopyOutBytes(t.rseqAddr, buf)
return err
}
// rseqAddrInterrupt checks if IP is in a critical section, and aborts if so.
//
// This is a bit complex since both the RSeq and RSeqCriticalSection structs
// are stored in userspace. So we must:
//
// 1. Copy in the address of RSeqCriticalSection from RSeq.
// 2. Copy in RSeqCriticalSection itself.
// 3. Validate critical section struct version, address range, abort address.
// 4. Validate the abort signature (4 bytes preceding abort IP match expected
// signature).
// 5. Clear address of RSeqCriticalSection from RSeq.
// 6. Finally, conditionally abort.
//
// See kernel/rseq.c:rseq_ip_fixup for reference.
//
// Preconditions: The caller must be running on the task goroutine. t's
// AddressSpace must be active.
func (t *Task) rseqAddrInterrupt() {
if t.rseqAddr == 0 {
return
}
critAddrAddr, ok := t.rseqAddr.AddLength(linux.OffsetOfRSeqCriticalSection)
if !ok {
// SetRSeq should validate this.
panic(fmt.Sprintf("t.rseqAddr (%#x) not large enough", t.rseqAddr))
}
if t.Arch().Width() != 8 {
// We only handle 64-bit for now.
t.Debugf("Only 64-bit rseq supported.")
t.forceSignal(linux.SIGSEGV, false /* unconditional */)
t.SendSignal(SignalInfoPriv(linux.SIGSEGV))
return
}
buf := t.CopyScratchBuffer(8)
if _, err := t.CopyInBytes(critAddrAddr, buf); err != nil {
t.Debugf("Failed to copy critical section address from %#x for rseq: %v", critAddrAddr, err)
t.forceSignal(linux.SIGSEGV, false /* unconditional */)
t.SendSignal(SignalInfoPriv(linux.SIGSEGV))
return
}
critAddr := usermem.Addr(usermem.ByteOrder.Uint64(buf))
if critAddr == 0 {
return
}
buf = t.CopyScratchBuffer(linux.SizeOfRSeqCriticalSection)
if _, err := t.CopyInBytes(critAddr, buf); err != nil {
t.Debugf("Failed to copy critical section from %#x for rseq: %v", critAddr, err)
t.forceSignal(linux.SIGSEGV, false /* unconditional */)
t.SendSignal(SignalInfoPriv(linux.SIGSEGV))
return
}
// Manually marshal RSeqCriticalSection as this is in the hot path when
// rseq is enabled. It must be as fast as possible.
//
// TODO(b/130243041): Replace with go_marshal.
cs := linux.RSeqCriticalSection{
Version: usermem.ByteOrder.Uint32(buf[0:4]),
Flags: usermem.ByteOrder.Uint32(buf[4:8]),
Start: usermem.ByteOrder.Uint64(buf[8:16]),
PostCommitOffset: usermem.ByteOrder.Uint64(buf[16:24]),
Abort: usermem.ByteOrder.Uint64(buf[24:32]),
}
if cs.Version != 0 {
t.Debugf("Unknown version in %+v", cs)
t.forceSignal(linux.SIGSEGV, false /* unconditional */)
t.SendSignal(SignalInfoPriv(linux.SIGSEGV))
return
}
start := usermem.Addr(cs.Start)
critRange, ok := start.ToRange(cs.PostCommitOffset)
if !ok {
t.Debugf("Invalid start and offset in %+v", cs)
t.forceSignal(linux.SIGSEGV, false /* unconditional */)
t.SendSignal(SignalInfoPriv(linux.SIGSEGV))
return
}
abort := usermem.Addr(cs.Abort)
if critRange.Contains(abort) {
t.Debugf("Abort in critical section in %+v", cs)
t.forceSignal(linux.SIGSEGV, false /* unconditional */)
t.SendSignal(SignalInfoPriv(linux.SIGSEGV))
return
}
// Verify signature.
sigAddr := abort - linux.SizeOfRSeqSignature
buf = t.CopyScratchBuffer(linux.SizeOfRSeqSignature)
if _, err := t.CopyInBytes(sigAddr, buf); err != nil {
t.Debugf("Failed to copy critical section signature from %#x for rseq: %v", sigAddr, err)
t.forceSignal(linux.SIGSEGV, false /* unconditional */)
t.SendSignal(SignalInfoPriv(linux.SIGSEGV))
return
}
sig := usermem.ByteOrder.Uint32(buf)
if sig != t.rseqSignature {
t.Debugf("Mismatched rseq signature %d != %d", sig, t.rseqSignature)
t.forceSignal(linux.SIGSEGV, false /* unconditional */)
t.SendSignal(SignalInfoPriv(linux.SIGSEGV))
return
}
// Clear the critical section address.
//
// NOTE(b/143949567): We don't support any rseq flags, so we always
// restart if we are in the critical section, and thus *always* clear
// critAddrAddr.
if _, err := t.MemoryManager().ZeroOut(t, critAddrAddr, int64(t.Arch().Width()), usermem.IOOpts{
AddressSpaceActive: true,
}); err != nil {
t.Debugf("Failed to clear critical section address from %#x for rseq: %v", critAddrAddr, err)
t.forceSignal(linux.SIGSEGV, false /* unconditional */)
t.SendSignal(SignalInfoPriv(linux.SIGSEGV))
return
}
// Finally we can actually decide whether or not to restart.
if !critRange.Contains(usermem.Addr(t.Arch().IP())) {
return
}
t.Arch().SetIP(uintptr(cs.Abort))
}
// Preconditions: The caller must be running on the task goroutine.
func (t *Task) oldRSeqInterrupt() {
r := t.tg.oldRSeqCritical.Load().(*OldRSeqCriticalRegion)
if ip := t.Arch().IP(); r.CriticalSection.Contains(usermem.Addr(ip)) {
t.Debugf("Interrupted rseq critical section at %#x; restarting at %#x", ip, r.Restart)
t.Arch().SetIP(uintptr(r.Restart))
t.Arch().SetOldRSeqInterruptedIP(ip)
}
}
// Preconditions: The caller must be running on the task goroutine.
func (t *Task) rseqInterrupt() {
t.rseqAddrInterrupt()
t.oldRSeqInterrupt()
}
|