summaryrefslogtreecommitdiffhomepage
path: root/pkg/sentry/fs/fsutil/inode_cached.go
blob: 6777c8bf72996ca8a10d8d37eb788418c4c537dc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
// Copyright 2018 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

package fsutil

import (
	"fmt"
	"io"
	"sync"

	"gvisor.googlesource.com/gvisor/pkg/log"
	"gvisor.googlesource.com/gvisor/pkg/sentry/context"
	"gvisor.googlesource.com/gvisor/pkg/sentry/fs"
	ktime "gvisor.googlesource.com/gvisor/pkg/sentry/kernel/time"
	"gvisor.googlesource.com/gvisor/pkg/sentry/memmap"
	"gvisor.googlesource.com/gvisor/pkg/sentry/platform"
	"gvisor.googlesource.com/gvisor/pkg/sentry/safemem"
	"gvisor.googlesource.com/gvisor/pkg/sentry/usage"
	"gvisor.googlesource.com/gvisor/pkg/sentry/usermem"
)

// Lock order (compare the lock order model in mm/mm.go):
//
// CachingInodeOperations.attrMu ("fs locks")
//   CachingInodeOperations.mapsMu ("memmap.Mappable locks not taken by Translate")
//     CachingInodeOperations.dataMu ("memmap.Mappable locks taken by Translate")
//       CachedFileObject locks

// CachingInodeOperations caches the metadata and content of a CachedFileObject.
// It implements a subset of InodeOperations. As a utility it can be used to
// implement the full set of InodeOperations. Generally it should not be
// embedded to avoid unexpected inherited behavior.
//
// CachingInodeOperations implements Mappable for the CachedFileObject:
//
// - If CachedFileObject.FD returns a value >= 0 then the file descriptor
//   will be memory mapped on the host.
//
// - Otherwise, the contents of CachedFileObject are buffered into memory
//   managed by the CachingInodeOperations.
//
// Implementations of FileOperations for a CachedFileObject must read and
// write through CachingInodeOperations using Read and Write respectively.
//
// Implementations of InodeOperations.WriteOut must call Sync to write out
// in-memory modifications of data and metadata to the CachedFileObject.
//
// +stateify savable
type CachingInodeOperations struct {
	// backingFile is a handle to a cached file object.
	backingFile CachedFileObject

	// platform is used to allocate memory that caches backingFile's contents.
	platform platform.Platform

	// forcePageCache indicates the sentry page cache should be used regardless
	// of whether the platform supports host mapped I/O or not. This must not be
	// modified after inode creation.
	forcePageCache bool

	attrMu sync.Mutex `state:"nosave"`

	// attr is unstable cached metadata.
	//
	// attr is protected by attrMu. attr.Size is protected by both attrMu and
	// dataMu; reading it requires locking either mutex, while mutating it
	// requires locking both.
	attr fs.UnstableAttr

	// dirtyAttr is metadata that was updated in-place but hasn't yet
	// been successfully written out.
	//
	// dirtyAttr is protected by attrMu.
	dirtyAttr fs.AttrMask

	mapsMu sync.Mutex `state:"nosave"`

	// mappings tracks mappings of the cached file object into
	// memmap.MappingSpaces.
	//
	// mappings is protected by mapsMu.
	mappings memmap.MappingSet

	dataMu sync.RWMutex `state:"nosave"`

	// cache maps offsets into the cached file to offsets into
	// platform.Memory() that store the file's data.
	//
	// cache is protected by dataMu.
	cache FileRangeSet

	// dirty tracks dirty segments in cache.
	//
	// dirty is protected by dataMu.
	dirty DirtySet

	// hostFileMapper caches internal mappings of backingFile.FD().
	hostFileMapper *HostFileMapper

	// refs tracks active references to data in the cache.
	//
	// refs is protected by dataMu.
	refs frameRefSet
}

// CachedFileObject is a file that may require caching.
type CachedFileObject interface {
	// ReadToBlocksAt reads up to dsts.NumBytes() bytes from the file to dsts,
	// starting at offset, and returns the number of bytes read. ReadToBlocksAt
	// may return a partial read without an error.
	ReadToBlocksAt(ctx context.Context, dsts safemem.BlockSeq, offset uint64) (uint64, error)

	// WriteFromBlocksAt writes up to srcs.NumBytes() bytes from srcs to the
	// file, starting at offset, and returns the number of bytes written.
	// WriteFromBlocksAt may return a partial write without an error.
	WriteFromBlocksAt(ctx context.Context, srcs safemem.BlockSeq, offset uint64) (uint64, error)

	// SetMaskedAttributes sets the attributes in attr that are true in mask
	// on the backing file.
	//
	// SetMaskedAttributes may be called at any point, regardless of whether
	// the file was opened.
	SetMaskedAttributes(ctx context.Context, mask fs.AttrMask, attr fs.UnstableAttr) error

	// Sync instructs the remote filesystem to sync the file to stable storage.
	Sync(ctx context.Context) error

	// FD returns a host file descriptor. Return value must be -1 or not -1
	// for the lifetime of the CachedFileObject.
	//
	// FD is called iff the file has been memory mapped. This implies that
	// the file was opened (see fs.InodeOperations.GetFile).
	//
	// FIXME: This interface seems to be
	// fundamentally broken.  We should clarify CachingInodeOperation's
	// behavior with metadata.
	FD() int
}

// NewCachingInodeOperations returns a new CachingInodeOperations backed by
// a CachedFileObject and its initial unstable attributes.
func NewCachingInodeOperations(ctx context.Context, backingFile CachedFileObject, uattr fs.UnstableAttr, forcePageCache bool) *CachingInodeOperations {
	p := platform.FromContext(ctx)
	if p == nil {
		panic(fmt.Sprintf("context.Context %T lacks non-nil value for key %T", ctx, platform.CtxPlatform))
	}
	return &CachingInodeOperations{
		backingFile:    backingFile,
		platform:       p,
		forcePageCache: forcePageCache,
		attr:           uattr,
		hostFileMapper: NewHostFileMapper(),
	}
}

// Release implements fs.InodeOperations.Release.
func (c *CachingInodeOperations) Release() {
	c.mapsMu.Lock()
	defer c.mapsMu.Unlock()
	c.dataMu.Lock()
	defer c.dataMu.Unlock()
	// The cache should be empty (something has gone terribly wrong if we're
	// releasing an inode that is still memory-mapped).
	if !c.mappings.IsEmpty() || !c.cache.IsEmpty() || !c.dirty.IsEmpty() {
		panic(fmt.Sprintf("Releasing CachingInodeOperations with mappings:\n%s\ncache contents:\n%s\ndirty segments:\n%s", &c.mappings, &c.cache, &c.dirty))
	}
}

// UnstableAttr implements fs.InodeOperations.UnstableAttr.
func (c *CachingInodeOperations) UnstableAttr(ctx context.Context, inode *fs.Inode) (fs.UnstableAttr, error) {
	c.attrMu.Lock()
	attr := c.attr
	c.attrMu.Unlock()
	return attr, nil
}

// SetPermissions implements fs.InodeOperations.SetPermissions.
func (c *CachingInodeOperations) SetPermissions(ctx context.Context, inode *fs.Inode, perms fs.FilePermissions) bool {
	c.attrMu.Lock()
	defer c.attrMu.Unlock()

	masked := fs.AttrMask{Perms: true}
	if err := c.backingFile.SetMaskedAttributes(ctx, masked, fs.UnstableAttr{Perms: perms}); err != nil {
		return false
	}
	c.attr.Perms = perms
	// FIXME: Clarify CachingInodeOperations behavior with metadata.
	c.dirtyAttr.Perms = true
	c.touchStatusChangeTimeLocked(ctx)
	return true

}

// SetOwner implements fs.InodeOperations.SetOwner.
func (c *CachingInodeOperations) SetOwner(ctx context.Context, inode *fs.Inode, owner fs.FileOwner) error {
	if !owner.UID.Ok() && !owner.GID.Ok() {
		return nil
	}

	c.attrMu.Lock()
	defer c.attrMu.Unlock()

	masked := fs.AttrMask{
		UID: owner.UID.Ok(),
		GID: owner.GID.Ok(),
	}
	if err := c.backingFile.SetMaskedAttributes(ctx, masked, fs.UnstableAttr{Owner: owner}); err != nil {
		return err
	}
	if owner.UID.Ok() {
		c.attr.Owner.UID = owner.UID
		// FIXME: Clarify CachingInodeOperations behavior with metadata.
		c.dirtyAttr.UID = true
	}
	if owner.GID.Ok() {
		c.attr.Owner.GID = owner.GID
		// FIXME: Clarify CachingInodeOperations behavior with metadata.
		c.dirtyAttr.GID = true
	}
	c.touchStatusChangeTimeLocked(ctx)
	return nil
}

// SetTimestamps implements fs.InodeOperations.SetTimestamps.
func (c *CachingInodeOperations) SetTimestamps(ctx context.Context, inode *fs.Inode, ts fs.TimeSpec) error {
	if ts.ATimeOmit && ts.MTimeOmit {
		return nil
	}

	c.attrMu.Lock()
	defer c.attrMu.Unlock()

	// Replace requests to use the "system time" with the current time to
	// ensure that cached timestamps remain consistent with the remote
	// filesystem.
	now := ktime.NowFromContext(ctx)
	if ts.ATimeSetSystemTime {
		ts.ATime = now
	}
	if ts.MTimeSetSystemTime {
		ts.MTime = now
	}
	masked := fs.AttrMask{
		AccessTime:       !ts.ATimeOmit,
		ModificationTime: !ts.MTimeOmit,
	}
	if err := c.backingFile.SetMaskedAttributes(ctx, masked, fs.UnstableAttr{AccessTime: ts.ATime, ModificationTime: ts.MTime}); err != nil {
		return err
	}
	if !ts.ATimeOmit {
		c.attr.AccessTime = ts.ATime
		// FIXME: Clarify CachingInodeOperations behavior with metadata.
		c.dirtyAttr.AccessTime = true
	}
	if !ts.MTimeOmit {
		c.attr.ModificationTime = ts.MTime
		// FIXME: Clarify CachingInodeOperations behavior with metadata.
		c.dirtyAttr.ModificationTime = true
	}
	c.touchStatusChangeTimeLocked(ctx)
	return nil
}

// Truncate implements fs.InodeOperations.Truncate.
func (c *CachingInodeOperations) Truncate(ctx context.Context, inode *fs.Inode, size int64) error {
	c.attrMu.Lock()
	defer c.attrMu.Unlock()

	// c.attr.Size is protected by both c.attrMu and c.dataMu.
	c.dataMu.Lock()
	if err := c.backingFile.SetMaskedAttributes(ctx, fs.AttrMask{
		Size: true,
	}, fs.UnstableAttr{
		Size: size,
	}); err != nil {
		c.dataMu.Unlock()
		return err
	}
	oldSize := c.attr.Size
	if oldSize != size {
		c.attr.Size = size
		// FIXME: Clarify CachingInodeOperations behavior with metadata.
		c.dirtyAttr.Size = true
		c.touchModificationTimeLocked(ctx)
	}
	// We drop c.dataMu here so that we can lock c.mapsMu and invalidate
	// mappings below. This allows concurrent calls to Read/Translate/etc.
	// These functions synchronize with an in-progress Truncate by refusing to
	// use cache contents beyond the new c.attr.Size. (We are still holding
	// c.attrMu, so we can't race with Truncate/Write.)
	c.dataMu.Unlock()

	// Nothing left to do unless shrinking the file.
	if size >= oldSize {
		return nil
	}

	oldpgend := fs.OffsetPageEnd(oldSize)
	newpgend := fs.OffsetPageEnd(size)

	// Invalidate past translations of truncated pages.
	if newpgend != oldpgend {
		c.mapsMu.Lock()
		c.mappings.Invalidate(memmap.MappableRange{newpgend, oldpgend}, memmap.InvalidateOpts{
			// Compare Linux's mm/truncate.c:truncate_setsize() =>
			// truncate_pagecache() =>
			// mm/memory.c:unmap_mapping_range(evencows=1).
			InvalidatePrivate: true,
		})
		c.mapsMu.Unlock()
	}

	// We are now guaranteed that there are no translations of truncated pages,
	// and can remove them from the cache. Since truncated pages have been
	// removed from the backing file, they should be dropped without being
	// written back.
	c.dataMu.Lock()
	defer c.dataMu.Unlock()
	c.cache.Truncate(uint64(size), c.platform.Memory())
	c.dirty.KeepClean(memmap.MappableRange{uint64(size), oldpgend})

	return nil
}

// WriteOut implements fs.InodeOperations.WriteOut.
func (c *CachingInodeOperations) WriteOut(ctx context.Context, inode *fs.Inode) error {
	c.attrMu.Lock()

	// Write dirty pages back.
	c.dataMu.RLock()
	err := SyncDirtyAll(ctx, &c.cache, &c.dirty, uint64(c.attr.Size), c.platform.Memory(), c.backingFile.WriteFromBlocksAt)
	c.dataMu.RUnlock()
	if err != nil {
		c.attrMu.Unlock()
		return err
	}

	// Write out cached attributes.
	if err := c.backingFile.SetMaskedAttributes(ctx, c.dirtyAttr, c.attr); err != nil {
		c.attrMu.Unlock()
		return err
	}
	c.dirtyAttr = fs.AttrMask{}

	c.attrMu.Unlock()

	// Fsync the remote file.
	return c.backingFile.Sync(ctx)
}

// IncLinks increases the link count and updates cached access time.
func (c *CachingInodeOperations) IncLinks(ctx context.Context) {
	c.attrMu.Lock()
	c.attr.Links++
	c.touchModificationTimeLocked(ctx)
	c.attrMu.Unlock()
}

// DecLinks decreases the link count and updates cached access time.
func (c *CachingInodeOperations) DecLinks(ctx context.Context) {
	c.attrMu.Lock()
	c.attr.Links--
	c.touchModificationTimeLocked(ctx)
	c.attrMu.Unlock()
}

// TouchAccessTime updates the cached access time in-place to the
// current time. It does not update status change time in-place. See
// mm/filemap.c:do_generic_file_read -> include/linux/h:file_accessed.
func (c *CachingInodeOperations) TouchAccessTime(ctx context.Context, inode *fs.Inode) {
	if inode.MountSource.Flags.NoAtime {
		return
	}

	c.attrMu.Lock()
	c.touchAccessTimeLocked(ctx)
	c.attrMu.Unlock()
}

// touchAccesstimeLocked updates the cached access time in-place to the current
// time.
//
// Preconditions: c.attrMu is locked for writing.
func (c *CachingInodeOperations) touchAccessTimeLocked(ctx context.Context) {
	c.attr.AccessTime = ktime.NowFromContext(ctx)
	c.dirtyAttr.AccessTime = true
}

// TouchModificationTime updates the cached modification and status change time
// in-place to the current time.
func (c *CachingInodeOperations) TouchModificationTime(ctx context.Context) {
	c.attrMu.Lock()
	c.touchModificationTimeLocked(ctx)
	c.attrMu.Unlock()
}

// touchModificationTimeLocked updates the cached modification and status
// change time in-place to the current time.
//
// Preconditions: c.attrMu is locked for writing.
func (c *CachingInodeOperations) touchModificationTimeLocked(ctx context.Context) {
	now := ktime.NowFromContext(ctx)
	c.attr.ModificationTime = now
	c.dirtyAttr.ModificationTime = true
	c.attr.StatusChangeTime = now
	c.dirtyAttr.StatusChangeTime = true
}

// touchStatusChangeTimeLocked updates the cached status change time
// in-place to the current time.
//
// Preconditions: c.attrMu is locked for writing.
func (c *CachingInodeOperations) touchStatusChangeTimeLocked(ctx context.Context) {
	now := ktime.NowFromContext(ctx)
	c.attr.StatusChangeTime = now
	c.dirtyAttr.StatusChangeTime = true
}

// UpdateUnstable updates the cached unstable attributes. Only non-dirty
// attributes are updated.
func (c *CachingInodeOperations) UpdateUnstable(attr fs.UnstableAttr) {
	// All attributes are protected by attrMu.
	c.attrMu.Lock()

	if !c.dirtyAttr.Usage {
		c.attr.Usage = attr.Usage
	}
	if !c.dirtyAttr.Perms {
		c.attr.Perms = attr.Perms
	}
	if !c.dirtyAttr.UID {
		c.attr.Owner.UID = attr.Owner.UID
	}
	if !c.dirtyAttr.GID {
		c.attr.Owner.GID = attr.Owner.GID
	}
	if !c.dirtyAttr.AccessTime {
		c.attr.AccessTime = attr.AccessTime
	}
	if !c.dirtyAttr.ModificationTime {
		c.attr.ModificationTime = attr.ModificationTime
	}
	if !c.dirtyAttr.StatusChangeTime {
		c.attr.StatusChangeTime = attr.StatusChangeTime
	}
	if !c.dirtyAttr.Links {
		c.attr.Links = attr.Links
	}

	// Size requires holding attrMu and dataMu.
	c.dataMu.Lock()
	if !c.dirtyAttr.Size {
		c.attr.Size = attr.Size
	}
	c.dataMu.Unlock()

	c.attrMu.Unlock()
}

// Read reads from frames and otherwise directly from the backing file
// into dst starting at offset until dst is full, EOF is reached, or an
// error is encountered.
//
// Read may partially fill dst and return a nil error.
func (c *CachingInodeOperations) Read(ctx context.Context, file *fs.File, dst usermem.IOSequence, offset int64) (int64, error) {
	if dst.NumBytes() == 0 {
		return 0, nil
	}

	// Have we reached EOF? We check for this again in
	// inodeReadWriter.ReadToBlocks to avoid holding c.attrMu (which would
	// serialize reads) or c.dataMu (which would violate lock ordering), but
	// check here first (before calling into MM) since reading at EOF is
	// common: getting a return value of 0 from a read syscall is the only way
	// to detect EOF.
	//
	// TODO: Separate out c.attr.Size and use atomics instead of
	// c.dataMu.
	c.dataMu.RLock()
	size := c.attr.Size
	c.dataMu.RUnlock()
	if offset >= size {
		return 0, io.EOF
	}

	n, err := dst.CopyOutFrom(ctx, &inodeReadWriter{ctx, c, offset})
	// Compare Linux's mm/filemap.c:do_generic_file_read() => file_accessed().
	c.TouchAccessTime(ctx, file.Dirent.Inode)
	return n, err
}

// Write writes to frames and otherwise directly to the backing file
// from src starting at offset and until src is empty or an error is
// encountered.
//
// If Write partially fills src, a non-nil error is returned.
func (c *CachingInodeOperations) Write(ctx context.Context, src usermem.IOSequence, offset int64) (int64, error) {
	// Hot path. Avoid defers.
	if src.NumBytes() == 0 {
		return 0, nil
	}

	c.attrMu.Lock()
	// Compare Linux's mm/filemap.c:__generic_file_write_iter() => file_update_time().
	c.touchModificationTimeLocked(ctx)
	n, err := src.CopyInTo(ctx, &inodeReadWriter{ctx, c, offset})
	c.attrMu.Unlock()
	return n, err
}

type inodeReadWriter struct {
	ctx    context.Context
	c      *CachingInodeOperations
	offset int64
}

// ReadToBlocks implements safemem.Reader.ReadToBlocks.
func (rw *inodeReadWriter) ReadToBlocks(dsts safemem.BlockSeq) (uint64, error) {
	// Hot path. Avoid defers.
	rw.c.dataMu.RLock()

	// Compute the range to read.
	if rw.offset >= rw.c.attr.Size {
		rw.c.dataMu.RUnlock()
		return 0, io.EOF
	}
	end := fs.ReadEndOffset(rw.offset, int64(dsts.NumBytes()), rw.c.attr.Size)
	if end == rw.offset { // dsts.NumBytes() == 0?
		rw.c.dataMu.RUnlock()
		return 0, nil
	}

	mem := rw.c.platform.Memory()
	var done uint64
	seg, gap := rw.c.cache.Find(uint64(rw.offset))
	for rw.offset < end {
		mr := memmap.MappableRange{uint64(rw.offset), uint64(end)}
		switch {
		case seg.Ok():
			// Get internal mappings from the cache.
			ims, err := mem.MapInternal(seg.FileRangeOf(seg.Range().Intersect(mr)), usermem.Read)
			if err != nil {
				rw.c.dataMu.RUnlock()
				return done, err
			}

			// Copy from internal mappings.
			n, err := safemem.CopySeq(dsts, ims)
			done += n
			rw.offset += int64(n)
			dsts = dsts.DropFirst64(n)
			if err != nil {
				rw.c.dataMu.RUnlock()
				return done, err
			}

			// Continue.
			seg, gap = seg.NextNonEmpty()

		case gap.Ok():
			// Read directly from the backing file.
			gapmr := gap.Range().Intersect(mr)
			dst := dsts.TakeFirst64(gapmr.Length())
			n, err := rw.c.backingFile.ReadToBlocksAt(rw.ctx, dst, gapmr.Start)
			done += n
			rw.offset += int64(n)
			dsts = dsts.DropFirst64(n)
			// Partial reads are fine. But we must stop reading.
			if n != dst.NumBytes() || err != nil {
				rw.c.dataMu.RUnlock()
				return done, err
			}

			// Continue.
			seg, gap = gap.NextSegment(), FileRangeGapIterator{}

		default:
			break
		}
	}
	rw.c.dataMu.RUnlock()
	return done, nil
}

// maybeGrowFile grows the file's size if data has been written past the old
// size.
//
// Preconditions: rw.c.attrMu and rw.c.dataMu bust be locked.
func (rw *inodeReadWriter) maybeGrowFile() {
	// If the write ends beyond the file's previous size, it causes the
	// file to grow.
	if rw.offset > rw.c.attr.Size {
		rw.c.attr.Size = rw.offset
		rw.c.dirtyAttr.Size = true
	}
	if rw.offset > rw.c.attr.Usage {
		// This is incorrect if CachingInodeOperations is caching a sparse
		// file. (In Linux, keeping inode::i_blocks up to date is the
		// filesystem's responsibility.)
		rw.c.attr.Usage = rw.offset
		rw.c.dirtyAttr.Usage = true
	}
}

// WriteFromBlocks implements safemem.Writer.WriteFromBlocks.
//
// Preconditions: rw.c.attrMu must be locked.
func (rw *inodeReadWriter) WriteFromBlocks(srcs safemem.BlockSeq) (uint64, error) {
	// Hot path. Avoid defers.
	rw.c.dataMu.Lock()

	// Compute the range to write.
	end := fs.WriteEndOffset(rw.offset, int64(srcs.NumBytes()))
	if end == rw.offset { // srcs.NumBytes() == 0?
		rw.c.dataMu.Unlock()
		return 0, nil
	}

	mem := rw.c.platform.Memory()
	var done uint64
	seg, gap := rw.c.cache.Find(uint64(rw.offset))
	for rw.offset < end {
		mr := memmap.MappableRange{uint64(rw.offset), uint64(end)}
		switch {
		case seg.Ok() && seg.Start() < mr.End:
			// Get internal mappings from the cache.
			segMR := seg.Range().Intersect(mr)
			ims, err := mem.MapInternal(seg.FileRangeOf(segMR), usermem.Write)
			if err != nil {
				rw.maybeGrowFile()
				rw.c.dataMu.Unlock()
				return done, err
			}

			// Copy to internal mappings.
			n, err := safemem.CopySeq(ims, srcs)
			done += n
			rw.offset += int64(n)
			srcs = srcs.DropFirst64(n)
			rw.c.dirty.MarkDirty(segMR)
			if err != nil {
				rw.maybeGrowFile()
				rw.c.dataMu.Unlock()
				return done, err
			}

			// Continue.
			seg, gap = seg.NextNonEmpty()

		case gap.Ok() && gap.Start() < mr.End:
			// Write directly to the backing file.
			gapmr := gap.Range().Intersect(mr)
			src := srcs.TakeFirst64(gapmr.Length())
			n, err := rw.c.backingFile.WriteFromBlocksAt(rw.ctx, src, gapmr.Start)
			done += n
			rw.offset += int64(n)
			srcs = srcs.DropFirst64(n)
			// Partial writes are fine. But we must stop writing.
			if n != src.NumBytes() || err != nil {
				rw.maybeGrowFile()
				rw.c.dataMu.Unlock()
				return done, err
			}

			// Continue.
			seg, gap = gap.NextSegment(), FileRangeGapIterator{}

		default:
			break
		}
	}
	rw.maybeGrowFile()
	rw.c.dataMu.Unlock()
	return done, nil
}

// AddMapping implements memmap.Mappable.AddMapping.
func (c *CachingInodeOperations) AddMapping(ctx context.Context, ms memmap.MappingSpace, ar usermem.AddrRange, offset uint64) error {
	// Hot path. Avoid defers.
	c.mapsMu.Lock()
	mapped := c.mappings.AddMapping(ms, ar, offset)
	// Do this unconditionally since whether we have c.backingFile.FD() >= 0
	// can change across save/restore.
	for _, r := range mapped {
		c.hostFileMapper.IncRefOn(r)
	}
	if !usage.IncrementalMappedAccounting && !c.forcePageCache && c.backingFile.FD() >= 0 {
		for _, r := range mapped {
			usage.MemoryAccounting.Inc(r.Length(), usage.Mapped)
		}
	}
	c.mapsMu.Unlock()
	return nil
}

// RemoveMapping implements memmap.Mappable.RemoveMapping.
func (c *CachingInodeOperations) RemoveMapping(ctx context.Context, ms memmap.MappingSpace, ar usermem.AddrRange, offset uint64) {
	// Hot path. Avoid defers.
	c.mapsMu.Lock()
	unmapped := c.mappings.RemoveMapping(ms, ar, offset)
	for _, r := range unmapped {
		c.hostFileMapper.DecRefOn(r)
	}
	if !c.forcePageCache && c.backingFile.FD() >= 0 {
		if !usage.IncrementalMappedAccounting {
			for _, r := range unmapped {
				usage.MemoryAccounting.Dec(r.Length(), usage.Mapped)
			}
		}
		c.mapsMu.Unlock()
		return
	}

	// Writeback dirty mapped memory now that there are no longer any
	// mappings that reference it. This is our naive memory eviction
	// strategy.
	mem := c.platform.Memory()
	c.dataMu.Lock()
	for _, r := range unmapped {
		if err := SyncDirty(ctx, r, &c.cache, &c.dirty, uint64(c.attr.Size), c.platform.Memory(), c.backingFile.WriteFromBlocksAt); err != nil {
			log.Warningf("Failed to writeback cached data %v: %v", r, err)
		}
		c.cache.Drop(r, mem)
		c.dirty.KeepClean(r)
	}
	c.dataMu.Unlock()
	c.mapsMu.Unlock()
}

// CopyMapping implements memmap.Mappable.CopyMapping.
func (c *CachingInodeOperations) CopyMapping(ctx context.Context, ms memmap.MappingSpace, srcAR, dstAR usermem.AddrRange, offset uint64) error {
	return c.AddMapping(ctx, ms, dstAR, offset)
}

// Translate implements memmap.Mappable.Translate.
func (c *CachingInodeOperations) Translate(ctx context.Context, required, optional memmap.MappableRange, at usermem.AccessType) ([]memmap.Translation, error) {
	// Hot path. Avoid defer.
	if !c.forcePageCache && c.backingFile.FD() >= 0 {
		return []memmap.Translation{
			{
				Source: optional,
				File:   c,
				Offset: optional.Start,
			},
		}, nil
	}

	c.dataMu.Lock()

	// Constrain translations to c.attr.Size (rounded up) to prevent
	// translation to pages that may be concurrently truncated.
	pgend := fs.OffsetPageEnd(c.attr.Size)
	var beyondEOF bool
	if required.End > pgend {
		if required.Start >= pgend {
			c.dataMu.Unlock()
			return nil, &memmap.BusError{io.EOF}
		}
		beyondEOF = true
		required.End = pgend
	}
	if optional.End > pgend {
		optional.End = pgend
	}

	mem := c.platform.Memory()
	cerr := c.cache.Fill(ctx, required, maxFillRange(required, optional), mem, usage.PageCache, c.backingFile.ReadToBlocksAt)

	var ts []memmap.Translation
	var translatedEnd uint64
	for seg := c.cache.FindSegment(required.Start); seg.Ok() && seg.Start() < required.End; seg, _ = seg.NextNonEmpty() {
		segMR := seg.Range().Intersect(optional)
		ts = append(ts, memmap.Translation{
			Source: segMR,
			File:   mem,
			Offset: seg.FileRangeOf(segMR).Start,
		})
		if at.Write {
			// From this point forward, this memory can be dirtied through the
			// mapping at any time.
			c.dirty.KeepDirty(segMR)
		}
		translatedEnd = segMR.End
	}

	c.dataMu.Unlock()

	// Don't return the error returned by c.cache.Fill if it occurred outside
	// of required.
	if translatedEnd < required.End && cerr != nil {
		return ts, &memmap.BusError{cerr}
	}
	if beyondEOF {
		return ts, &memmap.BusError{io.EOF}
	}
	return ts, nil
}

func maxFillRange(required, optional memmap.MappableRange) memmap.MappableRange {
	const maxReadahead = 64 << 10 // 64 KB, chosen arbitrarily
	if required.Length() >= maxReadahead {
		return required
	}
	if optional.Length() <= maxReadahead {
		return optional
	}
	optional.Start = required.Start
	if optional.Length() <= maxReadahead {
		return optional
	}
	optional.End = optional.Start + maxReadahead
	return optional
}

// InvalidateUnsavable implements memmap.Mappable.InvalidateUnsavable.
func (c *CachingInodeOperations) InvalidateUnsavable(ctx context.Context) error {
	// Whether we have a host fd (and consequently what platform.File is
	// mapped) can change across save/restore, so invalidate all translations
	// unconditionally.
	c.mapsMu.Lock()
	defer c.mapsMu.Unlock()
	c.mappings.InvalidateAll(memmap.InvalidateOpts{})

	// Sync the cache's contents so that if we have a host fd after restore,
	// the remote file's contents are coherent.
	c.dataMu.Lock()
	defer c.dataMu.Unlock()
	if err := SyncDirtyAll(ctx, &c.cache, &c.dirty, uint64(c.attr.Size), c.platform.Memory(), c.backingFile.WriteFromBlocksAt); err != nil {
		return err
	}

	// Discard the cache so that it's not stored in saved state. This is safe
	// because per InvalidateUnsavable invariants, no new translations can have
	// been returned after we invalidated all existing translations above.
	c.cache.DropAll(c.platform.Memory())
	c.dirty.RemoveAll()

	return nil
}

// MapInto implements platform.File.MapInto. This is used when we directly map
// an underlying host fd and CachingInodeOperations is used as the platform.File
// during translation.
func (c *CachingInodeOperations) MapInto(as platform.AddressSpace, addr usermem.Addr, fr platform.FileRange, at usermem.AccessType, precommit bool) error {
	return as.MapFile(addr, c.backingFile.FD(), fr, at, precommit)
}

// MapInternal implements platform.File.MapInternal. This is used when we
// directly map an underlying host fd and CachingInodeOperations is used as the
// platform.File during translation.
func (c *CachingInodeOperations) MapInternal(fr platform.FileRange, at usermem.AccessType) (safemem.BlockSeq, error) {
	return c.hostFileMapper.MapInternal(fr, c.backingFile.FD(), at.Write)
}

// IncRef implements platform.File.IncRef. This is used when we directly map an
// underlying host fd and CachingInodeOperations is used as the platform.File
// during translation.
func (c *CachingInodeOperations) IncRef(fr platform.FileRange) {
	// Hot path. Avoid defers.
	c.dataMu.Lock()
	seg, gap := c.refs.Find(fr.Start)
	for {
		switch {
		case seg.Ok() && seg.Start() < fr.End:
			seg = c.refs.Isolate(seg, fr)
			seg.SetValue(seg.Value() + 1)
			seg, gap = seg.NextNonEmpty()
		case gap.Ok() && gap.Start() < fr.End:
			newRange := gap.Range().Intersect(fr)
			if usage.IncrementalMappedAccounting {
				usage.MemoryAccounting.Inc(newRange.Length(), usage.Mapped)
			}
			seg, gap = c.refs.InsertWithoutMerging(gap, newRange, 1).NextNonEmpty()
		default:
			c.refs.MergeAdjacent(fr)
			c.dataMu.Unlock()
			return
		}
	}
}

// DecRef implements platform.File.DecRef. This is used when we directly map an
// underlying host fd and CachingInodeOperations is used as the platform.File
// during translation.
func (c *CachingInodeOperations) DecRef(fr platform.FileRange) {
	// Hot path. Avoid defers.
	c.dataMu.Lock()
	seg := c.refs.FindSegment(fr.Start)

	for seg.Ok() && seg.Start() < fr.End {
		seg = c.refs.Isolate(seg, fr)
		if old := seg.Value(); old == 1 {
			if usage.IncrementalMappedAccounting {
				usage.MemoryAccounting.Dec(seg.Range().Length(), usage.Mapped)
			}
			seg = c.refs.Remove(seg).NextSegment()
		} else {
			seg.SetValue(old - 1)
			seg = seg.NextSegment()
		}
	}
	c.refs.MergeAdjacent(fr)
	c.dataMu.Unlock()

}