1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
|
package fsutil
import (
__generics_imported0 "gvisor.dev/gvisor/pkg/sentry/platform"
)
import (
"bytes"
"fmt"
)
const (
// minDegree is the minimum degree of an internal node in a Set B-tree.
//
// - Any non-root node has at least minDegree-1 segments.
//
// - Any non-root internal (non-leaf) node has at least minDegree children.
//
// - The root node may have fewer than minDegree-1 segments, but it may
// only have 0 segments if the tree is empty.
//
// Our implementation requires minDegree >= 3. Higher values of minDegree
// usually improve performance, but increase memory usage for small sets.
frameRefminDegree = 3
frameRefmaxDegree = 2 * frameRefminDegree
)
// A Set is a mapping of segments with non-overlapping Range keys. The zero
// value for a Set is an empty set. Set values are not safely movable nor
// copyable. Set is thread-compatible.
//
// +stateify savable
type frameRefSet struct {
root frameRefnode `state:".(*frameRefSegmentDataSlices)"`
}
// IsEmpty returns true if the set contains no segments.
func (s *frameRefSet) IsEmpty() bool {
return s.root.nrSegments == 0
}
// IsEmptyRange returns true iff no segments in the set overlap the given
// range. This is semantically equivalent to s.SpanRange(r) == 0, but may be
// more efficient.
func (s *frameRefSet) IsEmptyRange(r __generics_imported0.FileRange) bool {
switch {
case r.Length() < 0:
panic(fmt.Sprintf("invalid range %v", r))
case r.Length() == 0:
return true
}
_, gap := s.Find(r.Start)
if !gap.Ok() {
return false
}
return r.End <= gap.End()
}
// Span returns the total size of all segments in the set.
func (s *frameRefSet) Span() uint64 {
var sz uint64
for seg := s.FirstSegment(); seg.Ok(); seg = seg.NextSegment() {
sz += seg.Range().Length()
}
return sz
}
// SpanRange returns the total size of the intersection of segments in the set
// with the given range.
func (s *frameRefSet) SpanRange(r __generics_imported0.FileRange) uint64 {
switch {
case r.Length() < 0:
panic(fmt.Sprintf("invalid range %v", r))
case r.Length() == 0:
return 0
}
var sz uint64
for seg := s.LowerBoundSegment(r.Start); seg.Ok() && seg.Start() < r.End; seg = seg.NextSegment() {
sz += seg.Range().Intersect(r).Length()
}
return sz
}
// FirstSegment returns the first segment in the set. If the set is empty,
// FirstSegment returns a terminal iterator.
func (s *frameRefSet) FirstSegment() frameRefIterator {
if s.root.nrSegments == 0 {
return frameRefIterator{}
}
return s.root.firstSegment()
}
// LastSegment returns the last segment in the set. If the set is empty,
// LastSegment returns a terminal iterator.
func (s *frameRefSet) LastSegment() frameRefIterator {
if s.root.nrSegments == 0 {
return frameRefIterator{}
}
return s.root.lastSegment()
}
// FirstGap returns the first gap in the set.
func (s *frameRefSet) FirstGap() frameRefGapIterator {
n := &s.root
for n.hasChildren {
n = n.children[0]
}
return frameRefGapIterator{n, 0}
}
// LastGap returns the last gap in the set.
func (s *frameRefSet) LastGap() frameRefGapIterator {
n := &s.root
for n.hasChildren {
n = n.children[n.nrSegments]
}
return frameRefGapIterator{n, n.nrSegments}
}
// Find returns the segment or gap whose range contains the given key. If a
// segment is found, the returned Iterator is non-terminal and the
// returned GapIterator is terminal. Otherwise, the returned Iterator is
// terminal and the returned GapIterator is non-terminal.
func (s *frameRefSet) Find(key uint64) (frameRefIterator, frameRefGapIterator) {
n := &s.root
for {
lower := 0
upper := n.nrSegments
for lower < upper {
i := lower + (upper-lower)/2
if r := n.keys[i]; key < r.End {
if key >= r.Start {
return frameRefIterator{n, i}, frameRefGapIterator{}
}
upper = i
} else {
lower = i + 1
}
}
i := lower
if !n.hasChildren {
return frameRefIterator{}, frameRefGapIterator{n, i}
}
n = n.children[i]
}
}
// FindSegment returns the segment whose range contains the given key. If no
// such segment exists, FindSegment returns a terminal iterator.
func (s *frameRefSet) FindSegment(key uint64) frameRefIterator {
seg, _ := s.Find(key)
return seg
}
// LowerBoundSegment returns the segment with the lowest range that contains a
// key greater than or equal to min. If no such segment exists,
// LowerBoundSegment returns a terminal iterator.
func (s *frameRefSet) LowerBoundSegment(min uint64) frameRefIterator {
seg, gap := s.Find(min)
if seg.Ok() {
return seg
}
return gap.NextSegment()
}
// UpperBoundSegment returns the segment with the highest range that contains a
// key less than or equal to max. If no such segment exists, UpperBoundSegment
// returns a terminal iterator.
func (s *frameRefSet) UpperBoundSegment(max uint64) frameRefIterator {
seg, gap := s.Find(max)
if seg.Ok() {
return seg
}
return gap.PrevSegment()
}
// FindGap returns the gap containing the given key. If no such gap exists
// (i.e. the set contains a segment containing that key), FindGap returns a
// terminal iterator.
func (s *frameRefSet) FindGap(key uint64) frameRefGapIterator {
_, gap := s.Find(key)
return gap
}
// LowerBoundGap returns the gap with the lowest range that is greater than or
// equal to min.
func (s *frameRefSet) LowerBoundGap(min uint64) frameRefGapIterator {
seg, gap := s.Find(min)
if gap.Ok() {
return gap
}
return seg.NextGap()
}
// UpperBoundGap returns the gap with the highest range that is less than or
// equal to max.
func (s *frameRefSet) UpperBoundGap(max uint64) frameRefGapIterator {
seg, gap := s.Find(max)
if gap.Ok() {
return gap
}
return seg.PrevGap()
}
// Add inserts the given segment into the set and returns true. If the new
// segment can be merged with adjacent segments, Add will do so. If the new
// segment would overlap an existing segment, Add returns false. If Add
// succeeds, all existing iterators are invalidated.
func (s *frameRefSet) Add(r __generics_imported0.FileRange, val uint64) bool {
if r.Length() <= 0 {
panic(fmt.Sprintf("invalid segment range %v", r))
}
gap := s.FindGap(r.Start)
if !gap.Ok() {
return false
}
if r.End > gap.End() {
return false
}
s.Insert(gap, r, val)
return true
}
// AddWithoutMerging inserts the given segment into the set and returns true.
// If it would overlap an existing segment, AddWithoutMerging does nothing and
// returns false. If AddWithoutMerging succeeds, all existing iterators are
// invalidated.
func (s *frameRefSet) AddWithoutMerging(r __generics_imported0.FileRange, val uint64) bool {
if r.Length() <= 0 {
panic(fmt.Sprintf("invalid segment range %v", r))
}
gap := s.FindGap(r.Start)
if !gap.Ok() {
return false
}
if r.End > gap.End() {
return false
}
s.InsertWithoutMergingUnchecked(gap, r, val)
return true
}
// Insert inserts the given segment into the given gap. If the new segment can
// be merged with adjacent segments, Insert will do so. Insert returns an
// iterator to the segment containing the inserted value (which may have been
// merged with other values). All existing iterators (including gap, but not
// including the returned iterator) are invalidated.
//
// If the gap cannot accommodate the segment, or if r is invalid, Insert panics.
//
// Insert is semantically equivalent to a InsertWithoutMerging followed by a
// Merge, but may be more efficient. Note that there is no unchecked variant of
// Insert since Insert must retrieve and inspect gap's predecessor and
// successor segments regardless.
func (s *frameRefSet) Insert(gap frameRefGapIterator, r __generics_imported0.FileRange, val uint64) frameRefIterator {
if r.Length() <= 0 {
panic(fmt.Sprintf("invalid segment range %v", r))
}
prev, next := gap.PrevSegment(), gap.NextSegment()
if prev.Ok() && prev.End() > r.Start {
panic(fmt.Sprintf("new segment %v overlaps predecessor %v", r, prev.Range()))
}
if next.Ok() && next.Start() < r.End {
panic(fmt.Sprintf("new segment %v overlaps successor %v", r, next.Range()))
}
if prev.Ok() && prev.End() == r.Start {
if mval, ok := (frameRefSetFunctions{}).Merge(prev.Range(), prev.Value(), r, val); ok {
prev.SetEndUnchecked(r.End)
prev.SetValue(mval)
if next.Ok() && next.Start() == r.End {
val = mval
if mval, ok := (frameRefSetFunctions{}).Merge(prev.Range(), val, next.Range(), next.Value()); ok {
prev.SetEndUnchecked(next.End())
prev.SetValue(mval)
return s.Remove(next).PrevSegment()
}
}
return prev
}
}
if next.Ok() && next.Start() == r.End {
if mval, ok := (frameRefSetFunctions{}).Merge(r, val, next.Range(), next.Value()); ok {
next.SetStartUnchecked(r.Start)
next.SetValue(mval)
return next
}
}
return s.InsertWithoutMergingUnchecked(gap, r, val)
}
// InsertWithoutMerging inserts the given segment into the given gap and
// returns an iterator to the inserted segment. All existing iterators
// (including gap, but not including the returned iterator) are invalidated.
//
// If the gap cannot accommodate the segment, or if r is invalid,
// InsertWithoutMerging panics.
func (s *frameRefSet) InsertWithoutMerging(gap frameRefGapIterator, r __generics_imported0.FileRange, val uint64) frameRefIterator {
if r.Length() <= 0 {
panic(fmt.Sprintf("invalid segment range %v", r))
}
if gr := gap.Range(); !gr.IsSupersetOf(r) {
panic(fmt.Sprintf("cannot insert segment range %v into gap range %v", r, gr))
}
return s.InsertWithoutMergingUnchecked(gap, r, val)
}
// InsertWithoutMergingUnchecked inserts the given segment into the given gap
// and returns an iterator to the inserted segment. All existing iterators
// (including gap, but not including the returned iterator) are invalidated.
//
// Preconditions: r.Start >= gap.Start(); r.End <= gap.End().
func (s *frameRefSet) InsertWithoutMergingUnchecked(gap frameRefGapIterator, r __generics_imported0.FileRange, val uint64) frameRefIterator {
gap = gap.node.rebalanceBeforeInsert(gap)
copy(gap.node.keys[gap.index+1:], gap.node.keys[gap.index:gap.node.nrSegments])
copy(gap.node.values[gap.index+1:], gap.node.values[gap.index:gap.node.nrSegments])
gap.node.keys[gap.index] = r
gap.node.values[gap.index] = val
gap.node.nrSegments++
return frameRefIterator{gap.node, gap.index}
}
// Remove removes the given segment and returns an iterator to the vacated gap.
// All existing iterators (including seg, but not including the returned
// iterator) are invalidated.
func (s *frameRefSet) Remove(seg frameRefIterator) frameRefGapIterator {
if seg.node.hasChildren {
victim := seg.PrevSegment()
seg.SetRangeUnchecked(victim.Range())
seg.SetValue(victim.Value())
return s.Remove(victim).NextGap()
}
copy(seg.node.keys[seg.index:], seg.node.keys[seg.index+1:seg.node.nrSegments])
copy(seg.node.values[seg.index:], seg.node.values[seg.index+1:seg.node.nrSegments])
frameRefSetFunctions{}.ClearValue(&seg.node.values[seg.node.nrSegments-1])
seg.node.nrSegments--
return seg.node.rebalanceAfterRemove(frameRefGapIterator{seg.node, seg.index})
}
// RemoveAll removes all segments from the set. All existing iterators are
// invalidated.
func (s *frameRefSet) RemoveAll() {
s.root = frameRefnode{}
}
// RemoveRange removes all segments in the given range. An iterator to the
// newly formed gap is returned, and all existing iterators are invalidated.
func (s *frameRefSet) RemoveRange(r __generics_imported0.FileRange) frameRefGapIterator {
seg, gap := s.Find(r.Start)
if seg.Ok() {
seg = s.Isolate(seg, r)
gap = s.Remove(seg)
}
for seg = gap.NextSegment(); seg.Ok() && seg.Start() < r.End; seg = gap.NextSegment() {
seg = s.Isolate(seg, r)
gap = s.Remove(seg)
}
return gap
}
// Merge attempts to merge two neighboring segments. If successful, Merge
// returns an iterator to the merged segment, and all existing iterators are
// invalidated. Otherwise, Merge returns a terminal iterator.
//
// If first is not the predecessor of second, Merge panics.
func (s *frameRefSet) Merge(first, second frameRefIterator) frameRefIterator {
if first.NextSegment() != second {
panic(fmt.Sprintf("attempt to merge non-neighboring segments %v, %v", first.Range(), second.Range()))
}
return s.MergeUnchecked(first, second)
}
// MergeUnchecked attempts to merge two neighboring segments. If successful,
// MergeUnchecked returns an iterator to the merged segment, and all existing
// iterators are invalidated. Otherwise, MergeUnchecked returns a terminal
// iterator.
//
// Precondition: first is the predecessor of second: first.NextSegment() ==
// second, first == second.PrevSegment().
func (s *frameRefSet) MergeUnchecked(first, second frameRefIterator) frameRefIterator {
if first.End() == second.Start() {
if mval, ok := (frameRefSetFunctions{}).Merge(first.Range(), first.Value(), second.Range(), second.Value()); ok {
first.SetEndUnchecked(second.End())
first.SetValue(mval)
return s.Remove(second).PrevSegment()
}
}
return frameRefIterator{}
}
// MergeAll attempts to merge all adjacent segments in the set. All existing
// iterators are invalidated.
func (s *frameRefSet) MergeAll() {
seg := s.FirstSegment()
if !seg.Ok() {
return
}
next := seg.NextSegment()
for next.Ok() {
if mseg := s.MergeUnchecked(seg, next); mseg.Ok() {
seg, next = mseg, mseg.NextSegment()
} else {
seg, next = next, next.NextSegment()
}
}
}
// MergeRange attempts to merge all adjacent segments that contain a key in the
// specific range. All existing iterators are invalidated.
func (s *frameRefSet) MergeRange(r __generics_imported0.FileRange) {
seg := s.LowerBoundSegment(r.Start)
if !seg.Ok() {
return
}
next := seg.NextSegment()
for next.Ok() && next.Range().Start < r.End {
if mseg := s.MergeUnchecked(seg, next); mseg.Ok() {
seg, next = mseg, mseg.NextSegment()
} else {
seg, next = next, next.NextSegment()
}
}
}
// MergeAdjacent attempts to merge the segment containing r.Start with its
// predecessor, and the segment containing r.End-1 with its successor.
func (s *frameRefSet) MergeAdjacent(r __generics_imported0.FileRange) {
first := s.FindSegment(r.Start)
if first.Ok() {
if prev := first.PrevSegment(); prev.Ok() {
s.Merge(prev, first)
}
}
last := s.FindSegment(r.End - 1)
if last.Ok() {
if next := last.NextSegment(); next.Ok() {
s.Merge(last, next)
}
}
}
// Split splits the given segment at the given key and returns iterators to the
// two resulting segments. All existing iterators (including seg, but not
// including the returned iterators) are invalidated.
//
// If the segment cannot be split at split (because split is at the start or
// end of the segment's range, so splitting would produce a segment with zero
// length, or because split falls outside the segment's range altogether),
// Split panics.
func (s *frameRefSet) Split(seg frameRefIterator, split uint64) (frameRefIterator, frameRefIterator) {
if !seg.Range().CanSplitAt(split) {
panic(fmt.Sprintf("can't split %v at %v", seg.Range(), split))
}
return s.SplitUnchecked(seg, split)
}
// SplitUnchecked splits the given segment at the given key and returns
// iterators to the two resulting segments. All existing iterators (including
// seg, but not including the returned iterators) are invalidated.
//
// Preconditions: seg.Start() < key < seg.End().
func (s *frameRefSet) SplitUnchecked(seg frameRefIterator, split uint64) (frameRefIterator, frameRefIterator) {
val1, val2 := (frameRefSetFunctions{}).Split(seg.Range(), seg.Value(), split)
end2 := seg.End()
seg.SetEndUnchecked(split)
seg.SetValue(val1)
seg2 := s.InsertWithoutMergingUnchecked(seg.NextGap(), __generics_imported0.FileRange{split, end2}, val2)
return seg2.PrevSegment(), seg2
}
// SplitAt splits the segment straddling split, if one exists. SplitAt returns
// true if a segment was split and false otherwise. If SplitAt splits a
// segment, all existing iterators are invalidated.
func (s *frameRefSet) SplitAt(split uint64) bool {
if seg := s.FindSegment(split); seg.Ok() && seg.Range().CanSplitAt(split) {
s.SplitUnchecked(seg, split)
return true
}
return false
}
// Isolate ensures that the given segment's range does not escape r by
// splitting at r.Start and r.End if necessary, and returns an updated iterator
// to the bounded segment. All existing iterators (including seg, but not
// including the returned iterators) are invalidated.
func (s *frameRefSet) Isolate(seg frameRefIterator, r __generics_imported0.FileRange) frameRefIterator {
if seg.Range().CanSplitAt(r.Start) {
_, seg = s.SplitUnchecked(seg, r.Start)
}
if seg.Range().CanSplitAt(r.End) {
seg, _ = s.SplitUnchecked(seg, r.End)
}
return seg
}
// ApplyContiguous applies a function to a contiguous range of segments,
// splitting if necessary. The function is applied until the first gap is
// encountered, at which point the gap is returned. If the function is applied
// across the entire range, a terminal gap is returned. All existing iterators
// are invalidated.
//
// N.B. The Iterator must not be invalidated by the function.
func (s *frameRefSet) ApplyContiguous(r __generics_imported0.FileRange, fn func(seg frameRefIterator)) frameRefGapIterator {
seg, gap := s.Find(r.Start)
if !seg.Ok() {
return gap
}
for {
seg = s.Isolate(seg, r)
fn(seg)
if seg.End() >= r.End {
return frameRefGapIterator{}
}
gap = seg.NextGap()
if !gap.IsEmpty() {
return gap
}
seg = gap.NextSegment()
if !seg.Ok() {
return frameRefGapIterator{}
}
}
}
// +stateify savable
type frameRefnode struct {
// An internal binary tree node looks like:
//
// K
// / \
// Cl Cr
//
// where all keys in the subtree rooted by Cl (the left subtree) are less
// than K (the key of the parent node), and all keys in the subtree rooted
// by Cr (the right subtree) are greater than K.
//
// An internal B-tree node's indexes work out to look like:
//
// K0 K1 K2 ... Kn-1
// / \/ \/ \ ... / \
// C0 C1 C2 C3 ... Cn-1 Cn
//
// where n is nrSegments.
nrSegments int
// parent is a pointer to this node's parent. If this node is root, parent
// is nil.
parent *frameRefnode
// parentIndex is the index of this node in parent.children.
parentIndex int
// Flag for internal nodes that is technically redundant with "children[0]
// != nil", but is stored in the first cache line. "hasChildren" rather
// than "isLeaf" because false must be the correct value for an empty root.
hasChildren bool
// Nodes store keys and values in separate arrays to maximize locality in
// the common case (scanning keys for lookup).
keys [frameRefmaxDegree - 1]__generics_imported0.FileRange
values [frameRefmaxDegree - 1]uint64
children [frameRefmaxDegree]*frameRefnode
}
// firstSegment returns the first segment in the subtree rooted by n.
//
// Preconditions: n.nrSegments != 0.
func (n *frameRefnode) firstSegment() frameRefIterator {
for n.hasChildren {
n = n.children[0]
}
return frameRefIterator{n, 0}
}
// lastSegment returns the last segment in the subtree rooted by n.
//
// Preconditions: n.nrSegments != 0.
func (n *frameRefnode) lastSegment() frameRefIterator {
for n.hasChildren {
n = n.children[n.nrSegments]
}
return frameRefIterator{n, n.nrSegments - 1}
}
func (n *frameRefnode) prevSibling() *frameRefnode {
if n.parent == nil || n.parentIndex == 0 {
return nil
}
return n.parent.children[n.parentIndex-1]
}
func (n *frameRefnode) nextSibling() *frameRefnode {
if n.parent == nil || n.parentIndex == n.parent.nrSegments {
return nil
}
return n.parent.children[n.parentIndex+1]
}
// rebalanceBeforeInsert splits n and its ancestors if they are full, as
// required for insertion, and returns an updated iterator to the position
// represented by gap.
func (n *frameRefnode) rebalanceBeforeInsert(gap frameRefGapIterator) frameRefGapIterator {
if n.parent != nil {
gap = n.parent.rebalanceBeforeInsert(gap)
}
if n.nrSegments < frameRefmaxDegree-1 {
return gap
}
if n.parent == nil {
left := &frameRefnode{
nrSegments: frameRefminDegree - 1,
parent: n,
parentIndex: 0,
hasChildren: n.hasChildren,
}
right := &frameRefnode{
nrSegments: frameRefminDegree - 1,
parent: n,
parentIndex: 1,
hasChildren: n.hasChildren,
}
copy(left.keys[:frameRefminDegree-1], n.keys[:frameRefminDegree-1])
copy(left.values[:frameRefminDegree-1], n.values[:frameRefminDegree-1])
copy(right.keys[:frameRefminDegree-1], n.keys[frameRefminDegree:])
copy(right.values[:frameRefminDegree-1], n.values[frameRefminDegree:])
n.keys[0], n.values[0] = n.keys[frameRefminDegree-1], n.values[frameRefminDegree-1]
frameRefzeroValueSlice(n.values[1:])
if n.hasChildren {
copy(left.children[:frameRefminDegree], n.children[:frameRefminDegree])
copy(right.children[:frameRefminDegree], n.children[frameRefminDegree:])
frameRefzeroNodeSlice(n.children[2:])
for i := 0; i < frameRefminDegree; i++ {
left.children[i].parent = left
left.children[i].parentIndex = i
right.children[i].parent = right
right.children[i].parentIndex = i
}
}
n.nrSegments = 1
n.hasChildren = true
n.children[0] = left
n.children[1] = right
if gap.node != n {
return gap
}
if gap.index < frameRefminDegree {
return frameRefGapIterator{left, gap.index}
}
return frameRefGapIterator{right, gap.index - frameRefminDegree}
}
copy(n.parent.keys[n.parentIndex+1:], n.parent.keys[n.parentIndex:n.parent.nrSegments])
copy(n.parent.values[n.parentIndex+1:], n.parent.values[n.parentIndex:n.parent.nrSegments])
n.parent.keys[n.parentIndex], n.parent.values[n.parentIndex] = n.keys[frameRefminDegree-1], n.values[frameRefminDegree-1]
copy(n.parent.children[n.parentIndex+2:], n.parent.children[n.parentIndex+1:n.parent.nrSegments+1])
for i := n.parentIndex + 2; i < n.parent.nrSegments+2; i++ {
n.parent.children[i].parentIndex = i
}
sibling := &frameRefnode{
nrSegments: frameRefminDegree - 1,
parent: n.parent,
parentIndex: n.parentIndex + 1,
hasChildren: n.hasChildren,
}
n.parent.children[n.parentIndex+1] = sibling
n.parent.nrSegments++
copy(sibling.keys[:frameRefminDegree-1], n.keys[frameRefminDegree:])
copy(sibling.values[:frameRefminDegree-1], n.values[frameRefminDegree:])
frameRefzeroValueSlice(n.values[frameRefminDegree-1:])
if n.hasChildren {
copy(sibling.children[:frameRefminDegree], n.children[frameRefminDegree:])
frameRefzeroNodeSlice(n.children[frameRefminDegree:])
for i := 0; i < frameRefminDegree; i++ {
sibling.children[i].parent = sibling
sibling.children[i].parentIndex = i
}
}
n.nrSegments = frameRefminDegree - 1
if gap.node != n {
return gap
}
if gap.index < frameRefminDegree {
return gap
}
return frameRefGapIterator{sibling, gap.index - frameRefminDegree}
}
// rebalanceAfterRemove "unsplits" n and its ancestors if they are deficient
// (contain fewer segments than required by B-tree invariants), as required for
// removal, and returns an updated iterator to the position represented by gap.
//
// Precondition: n is the only node in the tree that may currently violate a
// B-tree invariant.
func (n *frameRefnode) rebalanceAfterRemove(gap frameRefGapIterator) frameRefGapIterator {
for {
if n.nrSegments >= frameRefminDegree-1 {
return gap
}
if n.parent == nil {
return gap
}
if sibling := n.prevSibling(); sibling != nil && sibling.nrSegments >= frameRefminDegree {
copy(n.keys[1:], n.keys[:n.nrSegments])
copy(n.values[1:], n.values[:n.nrSegments])
n.keys[0] = n.parent.keys[n.parentIndex-1]
n.values[0] = n.parent.values[n.parentIndex-1]
n.parent.keys[n.parentIndex-1] = sibling.keys[sibling.nrSegments-1]
n.parent.values[n.parentIndex-1] = sibling.values[sibling.nrSegments-1]
frameRefSetFunctions{}.ClearValue(&sibling.values[sibling.nrSegments-1])
if n.hasChildren {
copy(n.children[1:], n.children[:n.nrSegments+1])
n.children[0] = sibling.children[sibling.nrSegments]
sibling.children[sibling.nrSegments] = nil
n.children[0].parent = n
n.children[0].parentIndex = 0
for i := 1; i < n.nrSegments+2; i++ {
n.children[i].parentIndex = i
}
}
n.nrSegments++
sibling.nrSegments--
if gap.node == sibling && gap.index == sibling.nrSegments {
return frameRefGapIterator{n, 0}
}
if gap.node == n {
return frameRefGapIterator{n, gap.index + 1}
}
return gap
}
if sibling := n.nextSibling(); sibling != nil && sibling.nrSegments >= frameRefminDegree {
n.keys[n.nrSegments] = n.parent.keys[n.parentIndex]
n.values[n.nrSegments] = n.parent.values[n.parentIndex]
n.parent.keys[n.parentIndex] = sibling.keys[0]
n.parent.values[n.parentIndex] = sibling.values[0]
copy(sibling.keys[:sibling.nrSegments-1], sibling.keys[1:])
copy(sibling.values[:sibling.nrSegments-1], sibling.values[1:])
frameRefSetFunctions{}.ClearValue(&sibling.values[sibling.nrSegments-1])
if n.hasChildren {
n.children[n.nrSegments+1] = sibling.children[0]
copy(sibling.children[:sibling.nrSegments], sibling.children[1:])
sibling.children[sibling.nrSegments] = nil
n.children[n.nrSegments+1].parent = n
n.children[n.nrSegments+1].parentIndex = n.nrSegments + 1
for i := 0; i < sibling.nrSegments; i++ {
sibling.children[i].parentIndex = i
}
}
n.nrSegments++
sibling.nrSegments--
if gap.node == sibling {
if gap.index == 0 {
return frameRefGapIterator{n, n.nrSegments}
}
return frameRefGapIterator{sibling, gap.index - 1}
}
return gap
}
p := n.parent
if p.nrSegments == 1 {
left, right := p.children[0], p.children[1]
p.nrSegments = left.nrSegments + right.nrSegments + 1
p.hasChildren = left.hasChildren
p.keys[left.nrSegments] = p.keys[0]
p.values[left.nrSegments] = p.values[0]
copy(p.keys[:left.nrSegments], left.keys[:left.nrSegments])
copy(p.values[:left.nrSegments], left.values[:left.nrSegments])
copy(p.keys[left.nrSegments+1:], right.keys[:right.nrSegments])
copy(p.values[left.nrSegments+1:], right.values[:right.nrSegments])
if left.hasChildren {
copy(p.children[:left.nrSegments+1], left.children[:left.nrSegments+1])
copy(p.children[left.nrSegments+1:], right.children[:right.nrSegments+1])
for i := 0; i < p.nrSegments+1; i++ {
p.children[i].parent = p
p.children[i].parentIndex = i
}
} else {
p.children[0] = nil
p.children[1] = nil
}
if gap.node == left {
return frameRefGapIterator{p, gap.index}
}
if gap.node == right {
return frameRefGapIterator{p, gap.index + left.nrSegments + 1}
}
return gap
}
// Merge n and either sibling, along with the segment separating the
// two, into whichever of the two nodes comes first. This is the
// reverse of the non-root splitting case in
// node.rebalanceBeforeInsert.
var left, right *frameRefnode
if n.parentIndex > 0 {
left = n.prevSibling()
right = n
} else {
left = n
right = n.nextSibling()
}
if gap.node == right {
gap = frameRefGapIterator{left, gap.index + left.nrSegments + 1}
}
left.keys[left.nrSegments] = p.keys[left.parentIndex]
left.values[left.nrSegments] = p.values[left.parentIndex]
copy(left.keys[left.nrSegments+1:], right.keys[:right.nrSegments])
copy(left.values[left.nrSegments+1:], right.values[:right.nrSegments])
if left.hasChildren {
copy(left.children[left.nrSegments+1:], right.children[:right.nrSegments+1])
for i := left.nrSegments + 1; i < left.nrSegments+right.nrSegments+2; i++ {
left.children[i].parent = left
left.children[i].parentIndex = i
}
}
left.nrSegments += right.nrSegments + 1
copy(p.keys[left.parentIndex:], p.keys[left.parentIndex+1:p.nrSegments])
copy(p.values[left.parentIndex:], p.values[left.parentIndex+1:p.nrSegments])
frameRefSetFunctions{}.ClearValue(&p.values[p.nrSegments-1])
copy(p.children[left.parentIndex+1:], p.children[left.parentIndex+2:p.nrSegments+1])
for i := 0; i < p.nrSegments; i++ {
p.children[i].parentIndex = i
}
p.children[p.nrSegments] = nil
p.nrSegments--
n = p
}
}
// A Iterator is conceptually one of:
//
// - A pointer to a segment in a set; or
//
// - A terminal iterator, which is a sentinel indicating that the end of
// iteration has been reached.
//
// Iterators are copyable values and are meaningfully equality-comparable. The
// zero value of Iterator is a terminal iterator.
//
// Unless otherwise specified, any mutation of a set invalidates all existing
// iterators into the set.
type frameRefIterator struct {
// node is the node containing the iterated segment. If the iterator is
// terminal, node is nil.
node *frameRefnode
// index is the index of the segment in node.keys/values.
index int
}
// Ok returns true if the iterator is not terminal. All other methods are only
// valid for non-terminal iterators.
func (seg frameRefIterator) Ok() bool {
return seg.node != nil
}
// Range returns the iterated segment's range key.
func (seg frameRefIterator) Range() __generics_imported0.FileRange {
return seg.node.keys[seg.index]
}
// Start is equivalent to Range().Start, but should be preferred if only the
// start of the range is needed.
func (seg frameRefIterator) Start() uint64 {
return seg.node.keys[seg.index].Start
}
// End is equivalent to Range().End, but should be preferred if only the end of
// the range is needed.
func (seg frameRefIterator) End() uint64 {
return seg.node.keys[seg.index].End
}
// SetRangeUnchecked mutates the iterated segment's range key. This operation
// does not invalidate any iterators.
//
// Preconditions:
//
// - r.Length() > 0.
//
// - The new range must not overlap an existing one: If seg.NextSegment().Ok(),
// then r.end <= seg.NextSegment().Start(); if seg.PrevSegment().Ok(), then
// r.start >= seg.PrevSegment().End().
func (seg frameRefIterator) SetRangeUnchecked(r __generics_imported0.FileRange) {
seg.node.keys[seg.index] = r
}
// SetRange mutates the iterated segment's range key. If the new range would
// cause the iterated segment to overlap another segment, or if the new range
// is invalid, SetRange panics. This operation does not invalidate any
// iterators.
func (seg frameRefIterator) SetRange(r __generics_imported0.FileRange) {
if r.Length() <= 0 {
panic(fmt.Sprintf("invalid segment range %v", r))
}
if prev := seg.PrevSegment(); prev.Ok() && r.Start < prev.End() {
panic(fmt.Sprintf("new segment range %v overlaps segment range %v", r, prev.Range()))
}
if next := seg.NextSegment(); next.Ok() && r.End > next.Start() {
panic(fmt.Sprintf("new segment range %v overlaps segment range %v", r, next.Range()))
}
seg.SetRangeUnchecked(r)
}
// SetStartUnchecked mutates the iterated segment's start. This operation does
// not invalidate any iterators.
//
// Preconditions: The new start must be valid: start < seg.End(); if
// seg.PrevSegment().Ok(), then start >= seg.PrevSegment().End().
func (seg frameRefIterator) SetStartUnchecked(start uint64) {
seg.node.keys[seg.index].Start = start
}
// SetStart mutates the iterated segment's start. If the new start value would
// cause the iterated segment to overlap another segment, or would result in an
// invalid range, SetStart panics. This operation does not invalidate any
// iterators.
func (seg frameRefIterator) SetStart(start uint64) {
if start >= seg.End() {
panic(fmt.Sprintf("new start %v would invalidate segment range %v", start, seg.Range()))
}
if prev := seg.PrevSegment(); prev.Ok() && start < prev.End() {
panic(fmt.Sprintf("new start %v would cause segment range %v to overlap segment range %v", start, seg.Range(), prev.Range()))
}
seg.SetStartUnchecked(start)
}
// SetEndUnchecked mutates the iterated segment's end. This operation does not
// invalidate any iterators.
//
// Preconditions: The new end must be valid: end > seg.Start(); if
// seg.NextSegment().Ok(), then end <= seg.NextSegment().Start().
func (seg frameRefIterator) SetEndUnchecked(end uint64) {
seg.node.keys[seg.index].End = end
}
// SetEnd mutates the iterated segment's end. If the new end value would cause
// the iterated segment to overlap another segment, or would result in an
// invalid range, SetEnd panics. This operation does not invalidate any
// iterators.
func (seg frameRefIterator) SetEnd(end uint64) {
if end <= seg.Start() {
panic(fmt.Sprintf("new end %v would invalidate segment range %v", end, seg.Range()))
}
if next := seg.NextSegment(); next.Ok() && end > next.Start() {
panic(fmt.Sprintf("new end %v would cause segment range %v to overlap segment range %v", end, seg.Range(), next.Range()))
}
seg.SetEndUnchecked(end)
}
// Value returns a copy of the iterated segment's value.
func (seg frameRefIterator) Value() uint64 {
return seg.node.values[seg.index]
}
// ValuePtr returns a pointer to the iterated segment's value. The pointer is
// invalidated if the iterator is invalidated. This operation does not
// invalidate any iterators.
func (seg frameRefIterator) ValuePtr() *uint64 {
return &seg.node.values[seg.index]
}
// SetValue mutates the iterated segment's value. This operation does not
// invalidate any iterators.
func (seg frameRefIterator) SetValue(val uint64) {
seg.node.values[seg.index] = val
}
// PrevSegment returns the iterated segment's predecessor. If there is no
// preceding segment, PrevSegment returns a terminal iterator.
func (seg frameRefIterator) PrevSegment() frameRefIterator {
if seg.node.hasChildren {
return seg.node.children[seg.index].lastSegment()
}
if seg.index > 0 {
return frameRefIterator{seg.node, seg.index - 1}
}
if seg.node.parent == nil {
return frameRefIterator{}
}
return frameRefsegmentBeforePosition(seg.node.parent, seg.node.parentIndex)
}
// NextSegment returns the iterated segment's successor. If there is no
// succeeding segment, NextSegment returns a terminal iterator.
func (seg frameRefIterator) NextSegment() frameRefIterator {
if seg.node.hasChildren {
return seg.node.children[seg.index+1].firstSegment()
}
if seg.index < seg.node.nrSegments-1 {
return frameRefIterator{seg.node, seg.index + 1}
}
if seg.node.parent == nil {
return frameRefIterator{}
}
return frameRefsegmentAfterPosition(seg.node.parent, seg.node.parentIndex)
}
// PrevGap returns the gap immediately before the iterated segment.
func (seg frameRefIterator) PrevGap() frameRefGapIterator {
if seg.node.hasChildren {
return seg.node.children[seg.index].lastSegment().NextGap()
}
return frameRefGapIterator{seg.node, seg.index}
}
// NextGap returns the gap immediately after the iterated segment.
func (seg frameRefIterator) NextGap() frameRefGapIterator {
if seg.node.hasChildren {
return seg.node.children[seg.index+1].firstSegment().PrevGap()
}
return frameRefGapIterator{seg.node, seg.index + 1}
}
// PrevNonEmpty returns the iterated segment's predecessor if it is adjacent,
// or the gap before the iterated segment otherwise. If seg.Start() ==
// Functions.MinKey(), PrevNonEmpty will return two terminal iterators.
// Otherwise, exactly one of the iterators returned by PrevNonEmpty will be
// non-terminal.
func (seg frameRefIterator) PrevNonEmpty() (frameRefIterator, frameRefGapIterator) {
gap := seg.PrevGap()
if gap.Range().Length() != 0 {
return frameRefIterator{}, gap
}
return gap.PrevSegment(), frameRefGapIterator{}
}
// NextNonEmpty returns the iterated segment's successor if it is adjacent, or
// the gap after the iterated segment otherwise. If seg.End() ==
// Functions.MaxKey(), NextNonEmpty will return two terminal iterators.
// Otherwise, exactly one of the iterators returned by NextNonEmpty will be
// non-terminal.
func (seg frameRefIterator) NextNonEmpty() (frameRefIterator, frameRefGapIterator) {
gap := seg.NextGap()
if gap.Range().Length() != 0 {
return frameRefIterator{}, gap
}
return gap.NextSegment(), frameRefGapIterator{}
}
// A GapIterator is conceptually one of:
//
// - A pointer to a position between two segments, before the first segment, or
// after the last segment in a set, called a *gap*; or
//
// - A terminal iterator, which is a sentinel indicating that the end of
// iteration has been reached.
//
// Note that the gap between two adjacent segments exists (iterators to it are
// non-terminal), but has a length of zero. GapIterator.IsEmpty returns true
// for such gaps. An empty set contains a single gap, spanning the entire range
// of the set's keys.
//
// GapIterators are copyable values and are meaningfully equality-comparable.
// The zero value of GapIterator is a terminal iterator.
//
// Unless otherwise specified, any mutation of a set invalidates all existing
// iterators into the set.
type frameRefGapIterator struct {
// The representation of a GapIterator is identical to that of an Iterator,
// except that index corresponds to positions between segments in the same
// way as for node.children (see comment for node.nrSegments).
node *frameRefnode
index int
}
// Ok returns true if the iterator is not terminal. All other methods are only
// valid for non-terminal iterators.
func (gap frameRefGapIterator) Ok() bool {
return gap.node != nil
}
// Range returns the range spanned by the iterated gap.
func (gap frameRefGapIterator) Range() __generics_imported0.FileRange {
return __generics_imported0.FileRange{gap.Start(), gap.End()}
}
// Start is equivalent to Range().Start, but should be preferred if only the
// start of the range is needed.
func (gap frameRefGapIterator) Start() uint64 {
if ps := gap.PrevSegment(); ps.Ok() {
return ps.End()
}
return frameRefSetFunctions{}.MinKey()
}
// End is equivalent to Range().End, but should be preferred if only the end of
// the range is needed.
func (gap frameRefGapIterator) End() uint64 {
if ns := gap.NextSegment(); ns.Ok() {
return ns.Start()
}
return frameRefSetFunctions{}.MaxKey()
}
// IsEmpty returns true if the iterated gap is empty (that is, the "gap" is
// between two adjacent segments.)
func (gap frameRefGapIterator) IsEmpty() bool {
return gap.Range().Length() == 0
}
// PrevSegment returns the segment immediately before the iterated gap. If no
// such segment exists, PrevSegment returns a terminal iterator.
func (gap frameRefGapIterator) PrevSegment() frameRefIterator {
return frameRefsegmentBeforePosition(gap.node, gap.index)
}
// NextSegment returns the segment immediately after the iterated gap. If no
// such segment exists, NextSegment returns a terminal iterator.
func (gap frameRefGapIterator) NextSegment() frameRefIterator {
return frameRefsegmentAfterPosition(gap.node, gap.index)
}
// PrevGap returns the iterated gap's predecessor. If no such gap exists,
// PrevGap returns a terminal iterator.
func (gap frameRefGapIterator) PrevGap() frameRefGapIterator {
seg := gap.PrevSegment()
if !seg.Ok() {
return frameRefGapIterator{}
}
return seg.PrevGap()
}
// NextGap returns the iterated gap's successor. If no such gap exists, NextGap
// returns a terminal iterator.
func (gap frameRefGapIterator) NextGap() frameRefGapIterator {
seg := gap.NextSegment()
if !seg.Ok() {
return frameRefGapIterator{}
}
return seg.NextGap()
}
// segmentBeforePosition returns the predecessor segment of the position given
// by n.children[i], which may or may not contain a child. If no such segment
// exists, segmentBeforePosition returns a terminal iterator.
func frameRefsegmentBeforePosition(n *frameRefnode, i int) frameRefIterator {
for i == 0 {
if n.parent == nil {
return frameRefIterator{}
}
n, i = n.parent, n.parentIndex
}
return frameRefIterator{n, i - 1}
}
// segmentAfterPosition returns the successor segment of the position given by
// n.children[i], which may or may not contain a child. If no such segment
// exists, segmentAfterPosition returns a terminal iterator.
func frameRefsegmentAfterPosition(n *frameRefnode, i int) frameRefIterator {
for i == n.nrSegments {
if n.parent == nil {
return frameRefIterator{}
}
n, i = n.parent, n.parentIndex
}
return frameRefIterator{n, i}
}
func frameRefzeroValueSlice(slice []uint64) {
for i := range slice {
frameRefSetFunctions{}.ClearValue(&slice[i])
}
}
func frameRefzeroNodeSlice(slice []*frameRefnode) {
for i := range slice {
slice[i] = nil
}
}
// String stringifies a Set for debugging.
func (s *frameRefSet) String() string {
return s.root.String()
}
// String stringifes a node (and all of its children) for debugging.
func (n *frameRefnode) String() string {
var buf bytes.Buffer
n.writeDebugString(&buf, "")
return buf.String()
}
func (n *frameRefnode) writeDebugString(buf *bytes.Buffer, prefix string) {
if n.hasChildren != (n.nrSegments > 0 && n.children[0] != nil) {
buf.WriteString(prefix)
buf.WriteString(fmt.Sprintf("WARNING: inconsistent value of hasChildren: got %v, want %v\n", n.hasChildren, !n.hasChildren))
}
for i := 0; i < n.nrSegments; i++ {
if child := n.children[i]; child != nil {
cprefix := fmt.Sprintf("%s- % 3d ", prefix, i)
if child.parent != n || child.parentIndex != i {
buf.WriteString(cprefix)
buf.WriteString(fmt.Sprintf("WARNING: inconsistent linkage to parent: got (%p, %d), want (%p, %d)\n", child.parent, child.parentIndex, n, i))
}
child.writeDebugString(buf, fmt.Sprintf("%s- % 3d ", prefix, i))
}
buf.WriteString(prefix)
buf.WriteString(fmt.Sprintf("- % 3d: %v => %v\n", i, n.keys[i], n.values[i]))
}
if child := n.children[n.nrSegments]; child != nil {
child.writeDebugString(buf, fmt.Sprintf("%s- % 3d ", prefix, n.nrSegments))
}
}
// SegmentDataSlices represents segments from a set as slices of start, end, and
// values. SegmentDataSlices is primarily used as an intermediate representation
// for save/restore and the layout here is optimized for that.
//
// +stateify savable
type frameRefSegmentDataSlices struct {
Start []uint64
End []uint64
Values []uint64
}
// ExportSortedSlice returns a copy of all segments in the given set, in ascending
// key order.
func (s *frameRefSet) ExportSortedSlices() *frameRefSegmentDataSlices {
var sds frameRefSegmentDataSlices
for seg := s.FirstSegment(); seg.Ok(); seg = seg.NextSegment() {
sds.Start = append(sds.Start, seg.Start())
sds.End = append(sds.End, seg.End())
sds.Values = append(sds.Values, seg.Value())
}
sds.Start = sds.Start[:len(sds.Start):len(sds.Start)]
sds.End = sds.End[:len(sds.End):len(sds.End)]
sds.Values = sds.Values[:len(sds.Values):len(sds.Values)]
return &sds
}
// ImportSortedSlice initializes the given set from the given slice.
//
// Preconditions: s must be empty. sds must represent a valid set (the segments
// in sds must have valid lengths that do not overlap). The segments in sds
// must be sorted in ascending key order.
func (s *frameRefSet) ImportSortedSlices(sds *frameRefSegmentDataSlices) error {
if !s.IsEmpty() {
return fmt.Errorf("cannot import into non-empty set %v", s)
}
gap := s.FirstGap()
for i := range sds.Start {
r := __generics_imported0.FileRange{sds.Start[i], sds.End[i]}
if !gap.Range().IsSupersetOf(r) {
return fmt.Errorf("segment overlaps a preceding segment or is incorrectly sorted: [%d, %d) => %v", sds.Start[i], sds.End[i], sds.Values[i])
}
gap = s.InsertWithoutMerging(gap, r, sds.Values[i]).NextGap()
}
return nil
}
func (s *frameRefSet) saveRoot() *frameRefSegmentDataSlices {
return s.ExportSortedSlices()
}
func (s *frameRefSet) loadRoot(sds *frameRefSegmentDataSlices) {
if err := s.ImportSortedSlices(sds); err != nil {
panic(err)
}
}
|