summaryrefslogtreecommitdiffhomepage
path: root/pkg/sentry/device/device.go
blob: 458d03b305e929cc9e75695dd916d3bf0c04fb90 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

// Package device defines reserved virtual kernel devices and structures
// for managing them.
package device

import (
	"bytes"
	"fmt"
	"sync"
	"sync/atomic"

	"gvisor.googlesource.com/gvisor/pkg/abi/linux"
)

// Registry tracks all simple devices and related state on the system for
// save/restore.
//
// The set of devices across save/restore must remain consistent. That is, no
// devices may be created or removed on restore relative to the saved
// system. Practically, this means do not create new devices specifically as
// part of restore.
//
// +stateify savable
type Registry struct {
	// lastAnonDeviceMinor is the last minor device number used for an anonymous
	// device. Must be accessed atomically.
	lastAnonDeviceMinor uint64

	// mu protects the fields below.
	mu sync.Mutex `state:"nosave"`

	devices map[ID]*Device
}

// SimpleDevices is the system-wide simple device registry. This is
// saved/restored by kernel.Kernel, but defined here to allow access without
// depending on the kernel package. See kernel.Kernel.deviceRegistry.
var SimpleDevices = newRegistry()

func newRegistry() *Registry {
	return &Registry{
		devices: make(map[ID]*Device),
	}
}

// newAnonID assigns a major and minor number to an anonymous device ID.
func (r *Registry) newAnonID() ID {
	return ID{
		// Anon devices always have a major number of 0.
		Major: 0,
		// Use the next minor number.
		Minor: atomic.AddUint64(&r.lastAnonDeviceMinor, 1),
	}
}

// newAnonDevice allocates a new anonymous device with a unique minor device
// number, and registers it with r.
func (r *Registry) newAnonDevice() *Device {
	r.mu.Lock()
	defer r.mu.Unlock()
	d := &Device{
		ID: r.newAnonID(),
	}
	r.devices[d.ID] = d
	return d
}

// LoadFrom initializes the internal state of all devices in r from other. The
// set of devices in both registries must match. Devices may not be created or
// destroyed across save/restore.
func (r *Registry) LoadFrom(other *Registry) {
	r.mu.Lock()
	defer r.mu.Unlock()
	other.mu.Lock()
	defer other.mu.Unlock()
	if len(r.devices) != len(other.devices) {
		panic(fmt.Sprintf("Devices were added or removed when restoring the registry:\nnew:\n%+v\nold:\n%+v", r.devices, other.devices))
	}
	for id, otherD := range other.devices {
		ourD, ok := r.devices[id]
		if !ok {
			panic(fmt.Sprintf("Device %+v could not be restored as it wasn't defined in the new registry", otherD))
		}
		ourD.loadFrom(otherD)
	}
	atomic.StoreUint64(&r.lastAnonDeviceMinor, atomic.LoadUint64(&other.lastAnonDeviceMinor))
}

// ID identifies a device.
//
// +stateify savable
type ID struct {
	Major uint64
	Minor uint64
}

// DeviceID formats a major and minor device number into a standard device number.
func (i *ID) DeviceID() uint64 {
	return uint64(linux.MakeDeviceID(uint16(i.Major), uint32(i.Minor)))
}

// NewAnonDevice creates a new anonymous device. Packages that require an anonymous
// device should initialize the device in a global variable in a file called device.go:
//
// var myDevice = device.NewAnonDevice()
func NewAnonDevice() *Device {
	return SimpleDevices.newAnonDevice()
}

// NewAnonMultiDevice creates a new multi-keyed anonymous device. Packages that require
// a multi-key anonymous device should initialize the device in a global variable in a
// file called device.go:
//
// var myDevice = device.NewAnonMultiDevice()
func NewAnonMultiDevice() *MultiDevice {
	return &MultiDevice{
		ID: SimpleDevices.newAnonID(),
	}
}

// Device is a simple virtual kernel device.
//
// +stateify savable
type Device struct {
	ID

	// last is the last generated inode.
	last uint64
}

// loadFrom initializes d from other. The IDs of both devices must match.
func (d *Device) loadFrom(other *Device) {
	if d.ID != other.ID {
		panic(fmt.Sprintf("Attempting to initialize a device %+v from %+v, but device IDs don't match", d, other))
	}
	atomic.StoreUint64(&d.last, atomic.LoadUint64(&other.last))
}

// NextIno generates a new inode number
func (d *Device) NextIno() uint64 {
	return atomic.AddUint64(&d.last, 1)
}

// MultiDeviceKey provides a hashable key for a MultiDevice. The key consists
// of a raw device and inode for a resource, which must consistently identify
// the unique resource.  It may optionally include a secondary device if
// appropriate.
//
// Note that using the path is not enough, because filesystems may rename a file
// to a different backing resource, at which point the path points to a different
// entity.  Using only the inode is also not enough because the inode is assumed
// to be unique only within the device on which the resource exists.
type MultiDeviceKey struct {
	Device          uint64
	SecondaryDevice string
	Inode           uint64
}

// String stringifies the key.
func (m MultiDeviceKey) String() string {
	return fmt.Sprintf("key{device: %d, sdevice: %s, inode: %d}", m.Device, m.SecondaryDevice, m.Inode)
}

// MultiDevice allows for remapping resources that come from a variety of raw
// devices into a single device.  The device ID should be one of the static
// Device IDs above and cannot be reused.
type MultiDevice struct {
	ID

	mu     sync.Mutex
	last   uint64
	cache  map[MultiDeviceKey]uint64
	rcache map[uint64]MultiDeviceKey
}

// String stringifies MultiDevice.
func (m *MultiDevice) String() string {
	buf := bytes.NewBuffer(nil)
	buf.WriteString("cache{")
	for k, v := range m.cache {
		buf.WriteString(fmt.Sprintf("%s -> %d, ", k, v))
	}
	buf.WriteString("}")
	return buf.String()
}

// Map maps a raw device and inode into the inode space of MultiDevice,
// returning a virtualized inode.  Raw devices and inodes can be reused;
// in this case, the same virtual inode will be returned.
func (m *MultiDevice) Map(key MultiDeviceKey) uint64 {
	m.mu.Lock()
	defer m.mu.Unlock()

	if m.cache == nil {
		m.cache = make(map[MultiDeviceKey]uint64)
		m.rcache = make(map[uint64]MultiDeviceKey)
	}

	id, ok := m.cache[key]
	if ok {
		return id
	}
	// Step over reserved entries that may have been loaded.
	idx := m.last + 1
	for {
		if _, ok := m.rcache[idx]; !ok {
			break
		}
		idx++
	}
	// We found a non-reserved entry, use it.
	m.last = idx
	m.cache[key] = m.last
	m.rcache[m.last] = key
	return m.last
}

// Load loads a raw device and inode into MultiDevice inode mappings
// with value as the virtual inode.
//
// By design, inodes start from 1 and continue until max uint64.  This means
// that the zero value, which is often the uninitialized value, can be rejected
// as invalid.
func (m *MultiDevice) Load(key MultiDeviceKey, value uint64) bool {
	// Reject the uninitialized value; see comment above.
	if value == 0 {
		return false
	}

	m.mu.Lock()
	defer m.mu.Unlock()

	if m.cache == nil {
		m.cache = make(map[MultiDeviceKey]uint64)
		m.rcache = make(map[uint64]MultiDeviceKey)
	}

	if val, exists := m.cache[key]; exists && val != value {
		return false
	}
	if k, exists := m.rcache[value]; exists && k != key {
		// Should never happen.
		panic("MultiDevice's caches are inconsistent")
	}

	// Cache value at key.
	m.cache[key] = value

	// Prevent value from being used by new inode mappings.
	m.rcache[value] = key

	return true
}