1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
|
# python3
# Copyright 2019 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Core benchmark annotations."""
import functools
import inspect
import types
from typing import List
from typing import Tuple
BENCHMARK_METRICS = '__benchmark_metrics__'
BENCHMARK_MACHINES = '__benchmark_machines__'
def is_benchmark(func: types.FunctionType) -> bool:
"""Returns true if the given function is a benchmark."""
return isinstance(func, types.FunctionType) and \
hasattr(func, BENCHMARK_METRICS) and \
hasattr(func, BENCHMARK_MACHINES)
def benchmark_metrics(func: types.FunctionType) -> List[Tuple[str, str]]:
"""Returns the list of available metrics."""
return [(metric.__name__, metric.__doc__)
for metric in getattr(func, BENCHMARK_METRICS)]
def benchmark_machines(func: types.FunctionType) -> int:
"""Returns the number of machines required."""
return getattr(func, BENCHMARK_MACHINES)
# pylint: disable=unused-argument
def default(value, **kwargs):
"""Returns the passed value."""
return value
def benchmark(metrics: List[types.FunctionType] = None,
machines: int = 1) -> types.FunctionType:
"""Define a benchmark function with metrics.
Args:
metrics: A list of metric functions.
machines: The number of machines required.
Returns:
A function that accepts the given number of machines, and iteratively
returns a set of (metric_name, metric_value) pairs when called repeatedly.
"""
if not metrics:
# The default passes through.
metrics = [default]
def decorator(func: types.FunctionType) -> types.FunctionType:
"""Decorator function."""
# Every benchmark should accept at least two parameters:
# runtime: The runtime to use for the benchmark (str, required).
# metrics: The metrics to use, if not the default (str, optional).
@functools.wraps(func)
def wrapper(*args, runtime: str, metric: list = None, **kwargs):
"""Wrapper function."""
# First -- ensure that we marshall all types appropriately. In
# general, we will call this with only strings. These strings will
# need to be converted to their underlying types/classes.
sig = inspect.signature(func)
for param in sig.parameters.values():
if param.annotation != inspect.Parameter.empty and \
param.name in kwargs and not isinstance(kwargs[param.name], param.annotation):
try:
# Marshall to the appropriate type.
kwargs[param.name] = param.annotation(kwargs[param.name])
except Exception as exc:
raise ValueError(
'illegal type for %s(%s=%s): %s' %
(func.__name__, param.name, kwargs[param.name], exc))
elif param.default != inspect.Parameter.empty and \
param.name not in kwargs:
# Ensure that we have the value set, because it will
# be passed to the metric function for evaluation.
kwargs[param.name] = param.default
# Next, figure out how to apply a metric. We do this prior to
# running the underlying function to prevent having to wait a few
# minutes for a result just to see some error.
if not metric:
# Return all metrics in the iterator.
result = func(*args, runtime=runtime, **kwargs)
for metric_func in metrics:
yield (metric_func.__name__, metric_func(result, **kwargs))
else:
result = None
for single_metric in metric:
for metric_func in metrics:
# Is this a function that matches the name?
# Apply this function to the result.
if metric_func.__name__ == single_metric:
if not result:
# Lazy evaluation: only if metric matches.
result = func(*args, runtime=runtime, **kwargs)
yield single_metric, metric_func(result, **kwargs)
# Set metadata on the benchmark (used above).
setattr(wrapper, BENCHMARK_METRICS, metrics)
setattr(wrapper, BENCHMARK_MACHINES, machines)
return wrapper
return decorator
|