summaryrefslogtreecommitdiffhomepage
path: root/pkg/tcpip/transport/tcp/connect.go
diff options
context:
space:
mode:
authorgVisor bot <gvisor-bot@google.com>2019-11-07 17:50:46 +0000
committergVisor bot <gvisor-bot@google.com>2019-11-07 17:50:46 +0000
commit6e114e15c6429c085a288de360ea073d6e4b99f0 (patch)
tree7795e5a48ecfa9900bd297cd0fdc8ee36ee4dd5c /pkg/tcpip/transport/tcp/connect.go
parent1cbd3d85c98a0e76fdd3f76028d32ccaca415b42 (diff)
parent66ebb6575f929a389d3c929977ed5e31d706fcfe (diff)
Merge release-20190806.1-382-g66ebb65 (automated)
Diffstat (limited to 'pkg/tcpip/transport/tcp/connect.go')
-rw-r--r--pkg/tcpip/transport/tcp/connect.go322
1 files changed, 293 insertions, 29 deletions
diff --git a/pkg/tcpip/transport/tcp/connect.go b/pkg/tcpip/transport/tcp/connect.go
index ca982c451..a114c06c1 100644
--- a/pkg/tcpip/transport/tcp/connect.go
+++ b/pkg/tcpip/transport/tcp/connect.go
@@ -15,6 +15,7 @@
package tcp
import (
+ "encoding/binary"
"sync"
"time"
@@ -22,6 +23,7 @@ import (
"gvisor.dev/gvisor/pkg/sleep"
"gvisor.dev/gvisor/pkg/tcpip"
"gvisor.dev/gvisor/pkg/tcpip/buffer"
+ "gvisor.dev/gvisor/pkg/tcpip/hash/jenkins"
"gvisor.dev/gvisor/pkg/tcpip/header"
"gvisor.dev/gvisor/pkg/tcpip/seqnum"
"gvisor.dev/gvisor/pkg/tcpip/stack"
@@ -139,7 +141,32 @@ func (h *handshake) resetState() {
h.flags = header.TCPFlagSyn
h.ackNum = 0
h.mss = 0
- h.iss = seqnum.Value(uint32(b[0]) | uint32(b[1])<<8 | uint32(b[2])<<16 | uint32(b[3])<<24)
+ h.iss = generateSecureISN(h.ep.ID, h.ep.stack.Seed())
+}
+
+// generateSecureISN generates a secure Initial Sequence number based on the
+// recommendation here https://tools.ietf.org/html/rfc6528#page-3.
+func generateSecureISN(id stack.TransportEndpointID, seed uint32) seqnum.Value {
+ isnHasher := jenkins.Sum32(seed)
+ isnHasher.Write([]byte(id.LocalAddress))
+ isnHasher.Write([]byte(id.RemoteAddress))
+ portBuf := make([]byte, 2)
+ binary.LittleEndian.PutUint16(portBuf, id.LocalPort)
+ isnHasher.Write(portBuf)
+ binary.LittleEndian.PutUint16(portBuf, id.RemotePort)
+ isnHasher.Write(portBuf)
+ // The time period here is 64ns. This is similar to what linux uses
+ // generate a sequence number that overlaps less than one
+ // time per MSL (2 minutes).
+ //
+ // A 64ns clock ticks 10^9/64 = 15625000) times in a second.
+ // To wrap the whole 32 bit space would require
+ // 2^32/1562500 ~ 274 seconds.
+ //
+ // Which sort of guarantees that we won't reuse the ISN for a new
+ // connection for the same tuple for at least 274s.
+ isn := isnHasher.Sum32() + uint32(time.Now().UnixNano()>>6)
+ return seqnum.Value(isn)
}
// effectiveRcvWndScale returns the effective receive window scale to be used.
@@ -809,7 +836,19 @@ func (e *endpoint) resetConnectionLocked(err *tcpip.Error) {
e.state = StateError
e.HardError = err
if err != tcpip.ErrConnectionReset {
- e.sendRaw(buffer.VectorisedView{}, header.TCPFlagAck|header.TCPFlagRst, e.snd.sndUna, e.rcv.rcvNxt, 0)
+ // The exact sequence number to be used for the RST is the same as the
+ // one used by Linux. We need to handle the case of window being shrunk
+ // which can cause sndNxt to be outside the acceptable window on the
+ // receiver.
+ //
+ // See: https://www.snellman.net/blog/archive/2016-02-01-tcp-rst/ for more
+ // information.
+ sndWndEnd := e.snd.sndUna.Add(e.snd.sndWnd)
+ resetSeqNum := sndWndEnd
+ if !sndWndEnd.LessThan(e.snd.sndNxt) || e.snd.sndNxt.Size(sndWndEnd) < (1<<e.snd.sndWndScale) {
+ resetSeqNum = e.snd.sndNxt
+ }
+ e.sendRaw(buffer.VectorisedView{}, header.TCPFlagAck|header.TCPFlagRst, resetSeqNum, e.rcv.rcvNxt, 0)
}
}
@@ -823,6 +862,51 @@ func (e *endpoint) completeWorkerLocked() {
}
}
+func (e *endpoint) handleReset(s *segment) (ok bool, err *tcpip.Error) {
+ if e.rcv.acceptable(s.sequenceNumber, 0) {
+ // RFC 793, page 37 states that "in all states
+ // except SYN-SENT, all reset (RST) segments are
+ // validated by checking their SEQ-fields." So
+ // we only process it if it's acceptable.
+ s.decRef()
+ e.mu.Lock()
+ switch e.state {
+ // In case of a RST in CLOSE-WAIT linux moves
+ // the socket to closed state with an error set
+ // to indicate EPIPE.
+ //
+ // Technically this seems to be at odds w/ RFC.
+ // As per https://tools.ietf.org/html/rfc793#section-2.7
+ // page 69 the behavior for a segment arriving
+ // w/ RST bit set in CLOSE-WAIT is inlined below.
+ //
+ // ESTABLISHED
+ // FIN-WAIT-1
+ // FIN-WAIT-2
+ // CLOSE-WAIT
+
+ // If the RST bit is set then, any outstanding RECEIVEs and
+ // SEND should receive "reset" responses. All segment queues
+ // should be flushed. Users should also receive an unsolicited
+ // general "connection reset" signal. Enter the CLOSED state,
+ // delete the TCB, and return.
+ case StateCloseWait:
+ e.state = StateClose
+ e.HardError = tcpip.ErrAborted
+ // We need to set this explicitly here because otherwise
+ // the port registrations will not be released till the
+ // endpoint is actively closed by the application.
+ e.workerCleanup = true
+ e.mu.Unlock()
+ return false, nil
+ default:
+ e.mu.Unlock()
+ return false, tcpip.ErrConnectionReset
+ }
+ }
+ return true, nil
+}
+
// handleSegments pulls segments from the queue and processes them. It returns
// no error if the protocol loop should continue, an error otherwise.
func (e *endpoint) handleSegments() *tcpip.Error {
@@ -840,14 +924,34 @@ func (e *endpoint) handleSegments() *tcpip.Error {
}
if s.flagIsSet(header.TCPFlagRst) {
- if e.rcv.acceptable(s.sequenceNumber, 0) {
- // RFC 793, page 37 states that "in all states
- // except SYN-SENT, all reset (RST) segments are
- // validated by checking their SEQ-fields." So
- // we only process it if it's acceptable.
- s.decRef()
- return tcpip.ErrConnectionReset
+ if ok, err := e.handleReset(s); !ok {
+ return err
}
+ } else if s.flagIsSet(header.TCPFlagSyn) {
+ // See: https://tools.ietf.org/html/rfc5961#section-4.1
+ // 1) If the SYN bit is set, irrespective of the sequence number, TCP
+ // MUST send an ACK (also referred to as challenge ACK) to the remote
+ // peer:
+ //
+ // <SEQ=SND.NXT><ACK=RCV.NXT><CTL=ACK>
+ //
+ // After sending the acknowledgment, TCP MUST drop the unacceptable
+ // segment and stop processing further.
+ //
+ // By sending an ACK, the remote peer is challenged to confirm the loss
+ // of the previous connection and the request to start a new connection.
+ // A legitimate peer, after restart, would not have a TCB in the
+ // synchronized state. Thus, when the ACK arrives, the peer should send
+ // a RST segment back with the sequence number derived from the ACK
+ // field that caused the RST.
+
+ // This RST will confirm that the remote peer has indeed closed the
+ // previous connection. Upon receipt of a valid RST, the local TCP
+ // endpoint MUST terminate its connection. The local TCP endpoint
+ // should then rely on SYN retransmission from the remote end to
+ // re-establish the connection.
+
+ e.snd.sendAck()
} else if s.flagIsSet(header.TCPFlagAck) {
// Patch the window size in the segment according to the
// send window scale.
@@ -856,7 +960,15 @@ func (e *endpoint) handleSegments() *tcpip.Error {
// RFC 793, page 41 states that "once in the ESTABLISHED
// state all segments must carry current acknowledgment
// information."
- e.rcv.handleRcvdSegment(s)
+ drop, err := e.rcv.handleRcvdSegment(s)
+ if err != nil {
+ s.decRef()
+ return err
+ }
+ if drop {
+ s.decRef()
+ continue
+ }
e.snd.handleRcvdSegment(s)
}
s.decRef()
@@ -955,7 +1067,6 @@ func (e *endpoint) protocolMainLoop(handshake bool) *tcpip.Error {
}
e.mu.Unlock()
-
// When the protocol loop exits we should wake up our waiters.
e.waiterQueue.Notify(waiter.EventHUp | waiter.EventErr | waiter.EventIn | waiter.EventOut)
}
@@ -1001,6 +1112,10 @@ func (e *endpoint) protocolMainLoop(handshake bool) *tcpip.Error {
// RTT itself.
e.rcvAutoParams.prevCopied = initialRcvWnd
e.rcvListMu.Unlock()
+ e.stack.Stats().TCP.CurrentEstablished.Increment()
+ e.mu.Lock()
+ e.state = StateEstablished
+ e.mu.Unlock()
}
e.keepalive.timer.init(&e.keepalive.waker)
@@ -1008,10 +1123,6 @@ func (e *endpoint) protocolMainLoop(handshake bool) *tcpip.Error {
// Tell waiters that the endpoint is connected and writable.
e.mu.Lock()
- if e.state != StateEstablished {
- e.stack.Stats().TCP.CurrentEstablished.Increment()
- e.state = StateEstablished
- }
drained := e.drainDone != nil
e.mu.Unlock()
if drained {
@@ -1042,7 +1153,13 @@ func (e *endpoint) protocolMainLoop(handshake bool) *tcpip.Error {
{
w: &closeWaker,
f: func() *tcpip.Error {
- return tcpip.ErrConnectionAborted
+ // This means the socket is being closed due
+ // to the TCP_FIN_WAIT2 timeout was hit. Just
+ // mark the socket as closed.
+ e.mu.Lock()
+ e.state = StateClose
+ e.mu.Unlock()
+ return nil
},
},
{
@@ -1085,17 +1202,18 @@ func (e *endpoint) protocolMainLoop(handshake bool) *tcpip.Error {
e.resetConnectionLocked(tcpip.ErrConnectionAborted)
e.mu.Unlock()
}
+
if n&notifyClose != 0 && closeTimer == nil {
- // Reset the connection 3 seconds after
- // the endpoint has been closed.
- //
- // The timer could fire in background
- // when the endpoint is drained. That's
- // OK as the loop here will not honor
- // the firing until the undrain arrives.
- closeTimer = time.AfterFunc(3*time.Second, func() {
- closeWaker.Assert()
- })
+ e.mu.Lock()
+ if e.state == StateFinWait2 && e.closed {
+ // The socket has been closed and we are in FIN_WAIT2
+ // so start the FIN_WAIT2 timer.
+ closeTimer = time.AfterFunc(e.tcpLingerTimeout, func() {
+ closeWaker.Assert()
+ })
+ e.waiterQueue.Notify(waiter.EventHUp | waiter.EventErr | waiter.EventIn | waiter.EventOut)
+ }
+ e.mu.Unlock()
}
if n&notifyKeepaliveChanged != 0 {
@@ -1117,6 +1235,12 @@ func (e *endpoint) protocolMainLoop(handshake bool) *tcpip.Error {
}
}
+ if n&notifyTickleWorker != 0 {
+ // Just a tickle notification. No need to do
+ // anything.
+ return nil
+ }
+
return nil
},
},
@@ -1143,15 +1267,16 @@ func (e *endpoint) protocolMainLoop(handshake bool) *tcpip.Error {
}
e.rcvListMu.Unlock()
- e.mu.RLock()
+ e.mu.Lock()
if e.workerCleanup {
e.notifyProtocolGoroutine(notifyClose)
}
- e.mu.RUnlock()
// Main loop. Handle segments until both send and receive ends of the
// connection have completed.
- for !e.rcv.closed || !e.snd.closed || e.snd.sndUna != e.snd.sndNxtList {
+
+ for e.state != StateTimeWait && e.state != StateClose && e.state != StateError {
+ e.mu.Unlock()
e.workMu.Unlock()
v, _ := s.Fetch(true)
e.workMu.Lock()
@@ -1167,6 +1292,23 @@ func (e *endpoint) protocolMainLoop(handshake bool) *tcpip.Error {
return nil
}
+ e.mu.Lock()
+ }
+
+ state := e.state
+ e.mu.Unlock()
+ var reuseTW func()
+ if state == StateTimeWait {
+ // Disable close timer as we now entering real TIME_WAIT.
+ if closeTimer != nil {
+ closeTimer.Stop()
+ }
+ // Mark the current sleeper done so as to free all associated
+ // wakers.
+ s.Done()
+ // Wake up any waiters before we enter TIME_WAIT.
+ e.waiterQueue.Notify(waiter.EventHUp | waiter.EventErr | waiter.EventIn | waiter.EventOut)
+ reuseTW = e.doTimeWait()
}
// Mark endpoint as closed.
@@ -1176,8 +1318,130 @@ func (e *endpoint) protocolMainLoop(handshake bool) *tcpip.Error {
e.stack.Stats().TCP.CurrentEstablished.Decrement()
e.state = StateClose
}
+
// Lock released below.
epilogue()
+ // A new SYN was received during TIME_WAIT and we need to abort
+ // the timewait and redirect the segment to the listener queue
+ if reuseTW != nil {
+ reuseTW()
+ }
+
return nil
}
+
+// handleTimeWaitSegments processes segments received during TIME_WAIT
+// state.
+func (e *endpoint) handleTimeWaitSegments() (extendTimeWait bool, reuseTW func()) {
+ checkRequeue := true
+ for i := 0; i < maxSegmentsPerWake; i++ {
+ s := e.segmentQueue.dequeue()
+ if s == nil {
+ checkRequeue = false
+ break
+ }
+ extTW, newSyn := e.rcv.handleTimeWaitSegment(s)
+ if newSyn {
+ info := e.EndpointInfo.TransportEndpointInfo
+ newID := info.ID
+ newID.RemoteAddress = ""
+ newID.RemotePort = 0
+ netProtos := []tcpip.NetworkProtocolNumber{info.NetProto}
+ // If the local address is an IPv4 address then also
+ // look for IPv6 dual stack endpoints that might be
+ // listening on the local address.
+ if newID.LocalAddress.To4() != "" {
+ netProtos = []tcpip.NetworkProtocolNumber{header.IPv4ProtocolNumber, header.IPv6ProtocolNumber}
+ }
+ for _, netProto := range netProtos {
+ if listenEP := e.stack.FindTransportEndpoint(netProto, info.TransProto, newID, &s.route); listenEP != nil {
+ tcpEP := listenEP.(*endpoint)
+ if EndpointState(tcpEP.State()) == StateListen {
+ reuseTW = func() {
+ tcpEP.enqueueSegment(s)
+ }
+ // We explicitly do not decRef
+ // the segment as it's still
+ // valid and being reflected to
+ // a listening endpoint.
+ return false, reuseTW
+ }
+ }
+ }
+ }
+ if extTW {
+ extendTimeWait = true
+ }
+ s.decRef()
+ }
+ if checkRequeue && !e.segmentQueue.empty() {
+ e.newSegmentWaker.Assert()
+ }
+ return extendTimeWait, nil
+}
+
+// doTimeWait is responsible for handling the TCP behaviour once a socket
+// enters the TIME_WAIT state. Optionally it can return a closure that
+// should be executed after releasing the endpoint registrations. This is
+// done in cases where a new SYN is received during TIME_WAIT that carries
+// a sequence number larger than one see on the connection.
+func (e *endpoint) doTimeWait() (twReuse func()) {
+ // Trigger a 2 * MSL time wait state. During this period
+ // we will drop all incoming segments.
+ // NOTE: On Linux this is not configurable and is fixed at 60 seconds.
+ timeWaitDuration := DefaultTCPTimeWaitTimeout
+
+ // Get the stack wide configuration.
+ var tcpTW tcpip.TCPTimeWaitTimeoutOption
+ if err := e.stack.TransportProtocolOption(ProtocolNumber, &tcpTW); err == nil {
+ timeWaitDuration = time.Duration(tcpTW)
+ }
+
+ const newSegment = 1
+ const notification = 2
+ const timeWaitDone = 3
+
+ s := sleep.Sleeper{}
+ s.AddWaker(&e.newSegmentWaker, newSegment)
+ s.AddWaker(&e.notificationWaker, notification)
+
+ var timeWaitWaker sleep.Waker
+ s.AddWaker(&timeWaitWaker, timeWaitDone)
+ timeWaitTimer := time.AfterFunc(timeWaitDuration, timeWaitWaker.Assert)
+ defer timeWaitTimer.Stop()
+
+ for {
+ e.workMu.Unlock()
+ v, _ := s.Fetch(true)
+ e.workMu.Lock()
+ switch v {
+ case newSegment:
+ extendTimeWait, reuseTW := e.handleTimeWaitSegments()
+ if reuseTW != nil {
+ return reuseTW
+ }
+ if extendTimeWait {
+ timeWaitTimer.Reset(timeWaitDuration)
+ }
+ case notification:
+ n := e.fetchNotifications()
+ if n&notifyClose != 0 {
+ return nil
+ }
+ if n&notifyDrain != 0 {
+ for !e.segmentQueue.empty() {
+ // Ignore extending TIME_WAIT during a
+ // save. For sockets in TIME_WAIT we just
+ // terminate the TIME_WAIT early.
+ e.handleTimeWaitSegments()
+ }
+ close(e.drainDone)
+ <-e.undrain
+ return nil
+ }
+ case timeWaitDone:
+ return nil
+ }
+ }
+}