1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
|
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://libtomcrypt.com
*/
/* Implements ECC over Z/pZ for curve y^2 = x^3 - 3x + b
*
* All curves taken from NIST recommendation paper of July 1999
* Available at http://csrc.nist.gov/cryptval/dss.htm
*/
#include "tomcrypt.h"
/**
@file ltc_ecc_mulmod_timing.c
ECC Crypto, Tom St Denis
*/
#ifdef MECC
#ifdef LTC_ECC_TIMING_RESISTANT
/**
Perform a point multiplication (timing resistant)
@param k The scalar to multiply by
@param G The base point
@param R [out] Destination for kG
@param modulus The modulus of the field the ECC curve is in
@param map Boolean whether to map back to affine or not (1==map, 0 == leave in projective)
@return CRYPT_OK on success
*/
int ltc_ecc_mulmod(void *k, ecc_point *G, ecc_point *R, void *modulus, int map)
{
ecc_point *tG, *M[3];
int i, j, err;
void *mu, *mp;
unsigned long buf;
int bitcnt, mode, digidx;
LTC_ARGCHK(k != NULL);
LTC_ARGCHK(G != NULL);
LTC_ARGCHK(R != NULL);
LTC_ARGCHK(modulus != NULL);
/* init montgomery reduction */
if ((err = mp_montgomery_setup(modulus, &mp)) != CRYPT_OK) {
return err;
}
if ((err = mp_init(&mu)) != CRYPT_OK) {
mp_montgomery_free(mp);
return err;
}
if ((err = mp_montgomery_normalization(mu, modulus)) != CRYPT_OK) {
mp_clear(mu);
mp_montgomery_free(mp);
return err;
}
/* alloc ram for window temps */
for (i = 0; i < 3; i++) {
M[i] = ltc_ecc_new_point();
if (M[i] == NULL) {
for (j = 0; j < i; j++) {
ltc_ecc_del_point(M[j]);
}
mp_clear(mu);
mp_montgomery_free(mp);
return CRYPT_MEM;
}
}
/* make a copy of G incase R==G */
tG = ltc_ecc_new_point();
if (tG == NULL) { err = CRYPT_MEM; goto done; }
/* tG = G and convert to montgomery */
if ((err = mp_mulmod(G->x, mu, modulus, tG->x)) != CRYPT_OK) { goto done; }
if ((err = mp_mulmod(G->y, mu, modulus, tG->y)) != CRYPT_OK) { goto done; }
if ((err = mp_mulmod(G->z, mu, modulus, tG->z)) != CRYPT_OK) { goto done; }
mp_clear(mu);
mu = NULL;
/* calc the M tab */
/* M[0] == G */
if ((err = mp_copy(tG->x, M[0]->x)) != CRYPT_OK) { goto done; }
if ((err = mp_copy(tG->y, M[0]->y)) != CRYPT_OK) { goto done; }
if ((err = mp_copy(tG->z, M[0]->z)) != CRYPT_OK) { goto done; }
/* M[1] == 2G */
if ((err = ltc_mp.ecc_ptdbl(tG, M[1], modulus, mp)) != CRYPT_OK) { goto done; }
/* setup sliding window */
mode = 0;
bitcnt = 1;
buf = 0;
digidx = mp_get_digit_count(k) - 1;
/* perform ops */
for (;;) {
/* grab next digit as required */
if (--bitcnt == 0) {
if (digidx == -1) {
break;
}
buf = mp_get_digit(k, digidx);
bitcnt = (int) MP_DIGIT_BIT;
--digidx;
}
/* grab the next msb from the ltiplicand */
i = (buf >> (MP_DIGIT_BIT - 1)) & 1;
buf <<= 1;
if (mode == 0 && i == 0) {
/* dummy operations */
if ((err = ltc_mp.ecc_ptadd(M[0], M[1], M[2], modulus, mp)) != CRYPT_OK) { goto done; }
if ((err = ltc_mp.ecc_ptdbl(M[1], M[2], modulus, mp)) != CRYPT_OK) { goto done; }
continue;
}
if (mode == 0 && i == 1) {
mode = 1;
/* dummy operations */
if ((err = ltc_mp.ecc_ptadd(M[0], M[1], M[2], modulus, mp)) != CRYPT_OK) { goto done; }
if ((err = ltc_mp.ecc_ptdbl(M[1], M[2], modulus, mp)) != CRYPT_OK) { goto done; }
continue;
}
if ((err = ltc_mp.ecc_ptadd(M[0], M[1], M[i^1], modulus, mp)) != CRYPT_OK) { goto done; }
if ((err = ltc_mp.ecc_ptdbl(M[i], M[i], modulus, mp)) != CRYPT_OK) { goto done; }
}
/* copy result out */
if ((err = mp_copy(M[0]->x, R->x)) != CRYPT_OK) { goto done; }
if ((err = mp_copy(M[0]->y, R->y)) != CRYPT_OK) { goto done; }
if ((err = mp_copy(M[0]->z, R->z)) != CRYPT_OK) { goto done; }
/* map R back from projective space */
if (map) {
err = ltc_ecc_map(R, modulus, mp);
} else {
err = CRYPT_OK;
}
done:
if (mu != NULL) {
mp_clear(mu);
}
mp_montgomery_free(mp);
ltc_ecc_del_point(tG);
for (i = 0; i < 3; i++) {
ltc_ecc_del_point(M[i]);
}
return err;
}
#endif
#endif
/* $Source: /cvs/libtom/libtomcrypt/src/pk/ecc/ltc_ecc_mulmod_timing.c,v $ */
/* $Revision: 1.11 $ */
/* $Date: 2006/12/04 22:17:46 $ */
|