1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
|
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://libtomcrypt.com
*/
/* Implements ECC over Z/pZ for curve y^2 = x^3 - 3x + b
*
* All curves taken from NIST recommendation paper of July 1999
* Available at http://csrc.nist.gov/cryptval/dss.htm
*/
#include "tomcrypt.h"
/**
@file ltc_ecc_mul2add.c
ECC Crypto, Shamir's Trick, Tom St Denis
*/
#ifdef MECC
#ifdef LTC_ECC_SHAMIR
/** Computes kA*A + kB*B = C using Shamir's Trick
@param A First point to multiply
@param kA What to multiple A by
@param B Second point to multiply
@param kB What to multiple B by
@param C [out] Destination point (can overlap with A or B
@param modulus Modulus for curve
@return CRYPT_OK on success
*/
int ltc_ecc_mul2add(ecc_point *A, void *kA,
ecc_point *B, void *kB,
ecc_point *C,
void *modulus)
{
ecc_point *precomp[16];
unsigned bitbufA, bitbufB, lenA, lenB, len, x, y, nA, nB, nibble;
unsigned char *tA, *tB;
int err, first;
void *mp, *mu;
/* argchks */
LTC_ARGCHK(A != NULL);
LTC_ARGCHK(B != NULL);
LTC_ARGCHK(C != NULL);
LTC_ARGCHK(kA != NULL);
LTC_ARGCHK(kB != NULL);
LTC_ARGCHK(modulus != NULL);
/* allocate memory */
tA = XCALLOC(1, ECC_BUF_SIZE);
if (tA == NULL) {
return CRYPT_MEM;
}
tB = XCALLOC(1, ECC_BUF_SIZE);
if (tB == NULL) {
XFREE(tA);
return CRYPT_MEM;
}
/* get sizes */
lenA = mp_unsigned_bin_size(kA);
lenB = mp_unsigned_bin_size(kB);
len = MAX(lenA, lenB);
/* sanity check */
if ((lenA > ECC_BUF_SIZE) || (lenB > ECC_BUF_SIZE)) {
err = CRYPT_INVALID_ARG;
goto ERR_T;
}
/* extract and justify kA */
mp_to_unsigned_bin(kA, (len - lenA) + tA);
/* extract and justify kB */
mp_to_unsigned_bin(kB, (len - lenB) + tB);
/* allocate the table */
for (x = 0; x < 16; x++) {
precomp[x] = ltc_ecc_new_point();
if (precomp[x] == NULL) {
for (y = 0; y < x; ++y) {
ltc_ecc_del_point(precomp[y]);
}
err = CRYPT_MEM;
goto ERR_T;
}
}
/* init montgomery reduction */
if ((err = mp_montgomery_setup(modulus, &mp)) != CRYPT_OK) {
goto ERR_P;
}
if ((err = mp_init(&mu)) != CRYPT_OK) {
goto ERR_MP;
}
if ((err = mp_montgomery_normalization(mu, modulus)) != CRYPT_OK) {
goto ERR_MU;
}
/* copy ones ... */
if ((err = mp_mulmod(A->x, mu, modulus, precomp[1]->x)) != CRYPT_OK) { goto ERR_MU; }
if ((err = mp_mulmod(A->y, mu, modulus, precomp[1]->y)) != CRYPT_OK) { goto ERR_MU; }
if ((err = mp_mulmod(A->z, mu, modulus, precomp[1]->z)) != CRYPT_OK) { goto ERR_MU; }
if ((err = mp_mulmod(B->x, mu, modulus, precomp[1<<2]->x)) != CRYPT_OK) { goto ERR_MU; }
if ((err = mp_mulmod(B->y, mu, modulus, precomp[1<<2]->y)) != CRYPT_OK) { goto ERR_MU; }
if ((err = mp_mulmod(B->z, mu, modulus, precomp[1<<2]->z)) != CRYPT_OK) { goto ERR_MU; }
/* precomp [i,0](A + B) table */
if ((err = ltc_mp.ecc_ptdbl(precomp[1], precomp[2], modulus, mp)) != CRYPT_OK) { goto ERR_MU; }
if ((err = ltc_mp.ecc_ptadd(precomp[1], precomp[2], precomp[3], modulus, mp)) != CRYPT_OK) { goto ERR_MU; }
/* precomp [0,i](A + B) table */
if ((err = ltc_mp.ecc_ptdbl(precomp[1<<2], precomp[2<<2], modulus, mp)) != CRYPT_OK) { goto ERR_MU; }
if ((err = ltc_mp.ecc_ptadd(precomp[1<<2], precomp[2<<2], precomp[3<<2], modulus, mp)) != CRYPT_OK) { goto ERR_MU; }
/* precomp [i,j](A + B) table (i != 0, j != 0) */
for (x = 1; x < 4; x++) {
for (y = 1; y < 4; y++) {
if ((err = ltc_mp.ecc_ptadd(precomp[x], precomp[(y<<2)], precomp[x+(y<<2)], modulus, mp)) != CRYPT_OK) { goto ERR_MU; }
}
}
nibble = 3;
first = 1;
bitbufA = tA[0];
bitbufB = tB[0];
/* for every byte of the multiplicands */
for (x = -1;; ) {
/* grab a nibble */
if (++nibble == 4) {
++x; if (x == len) break;
bitbufA = tA[x];
bitbufB = tB[x];
nibble = 0;
}
/* extract two bits from both, shift/update */
nA = (bitbufA >> 6) & 0x03;
nB = (bitbufB >> 6) & 0x03;
bitbufA = (bitbufA << 2) & 0xFF;
bitbufB = (bitbufB << 2) & 0xFF;
/* if both zero, if first, continue */
if ((nA == 0) && (nB == 0) && (first == 1)) {
continue;
}
/* double twice, only if this isn't the first */
if (first == 0) {
/* double twice */
if ((err = ltc_mp.ecc_ptdbl(C, C, modulus, mp)) != CRYPT_OK) { goto ERR_MU; }
if ((err = ltc_mp.ecc_ptdbl(C, C, modulus, mp)) != CRYPT_OK) { goto ERR_MU; }
}
/* if not both zero */
if ((nA != 0) || (nB != 0)) {
if (first == 1) {
/* if first, copy from table */
first = 0;
if ((err = mp_copy(precomp[nA + (nB<<2)]->x, C->x)) != CRYPT_OK) { goto ERR_MU; }
if ((err = mp_copy(precomp[nA + (nB<<2)]->y, C->y)) != CRYPT_OK) { goto ERR_MU; }
if ((err = mp_copy(precomp[nA + (nB<<2)]->z, C->z)) != CRYPT_OK) { goto ERR_MU; }
} else {
/* if not first, add from table */
if ((err = ltc_mp.ecc_ptadd(C, precomp[nA + (nB<<2)], C, modulus, mp)) != CRYPT_OK) { goto ERR_MU; }
}
}
}
/* reduce to affine */
err = ltc_ecc_map(C, modulus, mp);
/* clean up */
ERR_MU:
mp_clear(mu);
ERR_MP:
mp_montgomery_free(mp);
ERR_P:
for (x = 0; x < 16; x++) {
ltc_ecc_del_point(precomp[x]);
}
ERR_T:
#ifdef LTC_CLEAN_STACK
zeromem(tA, ECC_BUF_SIZE);
zeromem(tB, ECC_BUF_SIZE);
#endif
XFREE(tA);
XFREE(tB);
return err;
}
#endif
#endif
/* $Source: /cvs/libtom/libtomcrypt/src/pk/ecc/ltc_ecc_mul2add.c,v $ */
/* $Revision: 1.6 $ */
/* $Date: 2006/12/04 05:07:59 $ */
|