1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
|
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://libtomcrypt.org
*/
/**
@file rc6.c
RC6 code by Tom St Denis
*/
#include "tomcrypt.h"
#ifdef RC6
const struct ltc_cipher_descriptor rc6_desc =
{
"rc6",
3,
8, 128, 16, 20,
&rc6_setup,
&rc6_ecb_encrypt,
&rc6_ecb_decrypt,
&rc6_test,
&rc6_done,
&rc6_keysize,
NULL, NULL, NULL, NULL, NULL, NULL, NULL
};
static const ulong32 stab[44] = {
0xb7e15163UL, 0x5618cb1cUL, 0xf45044d5UL, 0x9287be8eUL, 0x30bf3847UL, 0xcef6b200UL, 0x6d2e2bb9UL, 0x0b65a572UL,
0xa99d1f2bUL, 0x47d498e4UL, 0xe60c129dUL, 0x84438c56UL, 0x227b060fUL, 0xc0b27fc8UL, 0x5ee9f981UL, 0xfd21733aUL,
0x9b58ecf3UL, 0x399066acUL, 0xd7c7e065UL, 0x75ff5a1eUL, 0x1436d3d7UL, 0xb26e4d90UL, 0x50a5c749UL, 0xeedd4102UL,
0x8d14babbUL, 0x2b4c3474UL, 0xc983ae2dUL, 0x67bb27e6UL, 0x05f2a19fUL, 0xa42a1b58UL, 0x42619511UL, 0xe0990ecaUL,
0x7ed08883UL, 0x1d08023cUL, 0xbb3f7bf5UL, 0x5976f5aeUL, 0xf7ae6f67UL, 0x95e5e920UL, 0x341d62d9UL, 0xd254dc92UL,
0x708c564bUL, 0x0ec3d004UL, 0xacfb49bdUL, 0x4b32c376UL };
/**
Initialize the RC6 block cipher
@param key The symmetric key you wish to pass
@param keylen The key length in bytes
@param num_rounds The number of rounds desired (0 for default)
@param skey The key in as scheduled by this function.
@return CRYPT_OK if successful
*/
#ifdef LTC_CLEAN_STACK
static int _rc6_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
#else
int rc6_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
#endif
{
ulong32 L[64], S[50], A, B, i, j, v, s, l;
LTC_ARGCHK(key != NULL);
LTC_ARGCHK(skey != NULL);
/* test parameters */
if (num_rounds != 0 && num_rounds != 20) {
return CRYPT_INVALID_ROUNDS;
}
/* key must be between 64 and 1024 bits */
if (keylen < 8 || keylen > 128) {
return CRYPT_INVALID_KEYSIZE;
}
/* copy the key into the L array */
for (A = i = j = 0; i < (ulong32)keylen; ) {
A = (A << 8) | ((ulong32)(key[i++] & 255));
if (!(i & 3)) {
L[j++] = BSWAP(A);
A = 0;
}
}
/* handle odd sized keys */
if (keylen & 3) {
A <<= (8 * (4 - (keylen&3)));
L[j++] = BSWAP(A);
}
/* setup the S array */
XMEMCPY(S, stab, 44 * sizeof(stab[0]));
/* mix buffer */
s = 3 * MAX(44, j);
l = j;
for (A = B = i = j = v = 0; v < s; v++) {
A = S[i] = ROLc(S[i] + A + B, 3);
B = L[j] = ROL(L[j] + A + B, (A+B));
if (++i == 44) { i = 0; }
if (++j == l) { j = 0; }
}
/* copy to key */
for (i = 0; i < 44; i++) {
skey->rc6.K[i] = S[i];
}
return CRYPT_OK;
}
#ifdef LTC_CLEAN_STACK
int rc6_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
{
int x;
x = _rc6_setup(key, keylen, num_rounds, skey);
burn_stack(sizeof(ulong32) * 122);
return x;
}
#endif
/**
Encrypts a block of text with RC6
@param pt The input plaintext (16 bytes)
@param ct The output ciphertext (16 bytes)
@param skey The key as scheduled
*/
#ifdef LTC_CLEAN_STACK
static void _rc6_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey)
#else
void rc6_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey)
#endif
{
ulong32 a,b,c,d,t,u, *K;
int r;
LTC_ARGCHK(skey != NULL);
LTC_ARGCHK(pt != NULL);
LTC_ARGCHK(ct != NULL);
LOAD32L(a,&pt[0]);LOAD32L(b,&pt[4]);LOAD32L(c,&pt[8]);LOAD32L(d,&pt[12]);
b += skey->rc6.K[0];
d += skey->rc6.K[1];
#define RND(a,b,c,d) \
t = (b * (b + b + 1)); t = ROLc(t, 5); \
u = (d * (d + d + 1)); u = ROLc(u, 5); \
a = ROL(a^t,u) + K[0]; \
c = ROL(c^u,t) + K[1]; K += 2;
K = skey->rc6.K + 2;
for (r = 0; r < 20; r += 4) {
RND(a,b,c,d);
RND(b,c,d,a);
RND(c,d,a,b);
RND(d,a,b,c);
}
#undef RND
a += skey->rc6.K[42];
c += skey->rc6.K[43];
STORE32L(a,&ct[0]);STORE32L(b,&ct[4]);STORE32L(c,&ct[8]);STORE32L(d,&ct[12]);
}
#ifdef LTC_CLEAN_STACK
void rc6_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey)
{
_rc6_ecb_encrypt(pt, ct, skey);
burn_stack(sizeof(ulong32) * 6 + sizeof(int));
}
#endif
/**
Decrypts a block of text with RC6
@param ct The input ciphertext (16 bytes)
@param pt The output plaintext (16 bytes)
@param skey The key as scheduled
*/
#ifdef LTC_CLEAN_STACK
static void _rc6_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey)
#else
void rc6_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey)
#endif
{
ulong32 a,b,c,d,t,u, *K;
int r;
LTC_ARGCHK(skey != NULL);
LTC_ARGCHK(pt != NULL);
LTC_ARGCHK(ct != NULL);
LOAD32L(a,&ct[0]);LOAD32L(b,&ct[4]);LOAD32L(c,&ct[8]);LOAD32L(d,&ct[12]);
a -= skey->rc6.K[42];
c -= skey->rc6.K[43];
#define RND(a,b,c,d) \
t = (b * (b + b + 1)); t = ROLc(t, 5); \
u = (d * (d + d + 1)); u = ROLc(u, 5); \
c = ROR(c - K[1], t) ^ u; \
a = ROR(a - K[0], u) ^ t; K -= 2;
K = skey->rc6.K + 40;
for (r = 0; r < 20; r += 4) {
RND(d,a,b,c);
RND(c,d,a,b);
RND(b,c,d,a);
RND(a,b,c,d);
}
#undef RND
b -= skey->rc6.K[0];
d -= skey->rc6.K[1];
STORE32L(a,&pt[0]);STORE32L(b,&pt[4]);STORE32L(c,&pt[8]);STORE32L(d,&pt[12]);
}
#ifdef LTC_CLEAN_STACK
void rc6_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey)
{
_rc6_ecb_decrypt(ct, pt, skey);
burn_stack(sizeof(ulong32) * 6 + sizeof(int));
}
#endif
/**
Performs a self-test of the RC6 block cipher
@return CRYPT_OK if functional, CRYPT_NOP if self-test has been disabled
*/
int rc6_test(void)
{
#ifndef LTC_TEST
return CRYPT_NOP;
#else
static const struct {
int keylen;
unsigned char key[32], pt[16], ct[16];
} tests[] = {
{
16,
{ 0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef,
0x01, 0x12, 0x23, 0x34, 0x45, 0x56, 0x67, 0x78,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
{ 0x02, 0x13, 0x24, 0x35, 0x46, 0x57, 0x68, 0x79,
0x8a, 0x9b, 0xac, 0xbd, 0xce, 0xdf, 0xe0, 0xf1 },
{ 0x52, 0x4e, 0x19, 0x2f, 0x47, 0x15, 0xc6, 0x23,
0x1f, 0x51, 0xf6, 0x36, 0x7e, 0xa4, 0x3f, 0x18 }
},
{
24,
{ 0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef,
0x01, 0x12, 0x23, 0x34, 0x45, 0x56, 0x67, 0x78,
0x89, 0x9a, 0xab, 0xbc, 0xcd, 0xde, 0xef, 0xf0,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
{ 0x02, 0x13, 0x24, 0x35, 0x46, 0x57, 0x68, 0x79,
0x8a, 0x9b, 0xac, 0xbd, 0xce, 0xdf, 0xe0, 0xf1 },
{ 0x68, 0x83, 0x29, 0xd0, 0x19, 0xe5, 0x05, 0x04,
0x1e, 0x52, 0xe9, 0x2a, 0xf9, 0x52, 0x91, 0xd4 }
},
{
32,
{ 0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef,
0x01, 0x12, 0x23, 0x34, 0x45, 0x56, 0x67, 0x78,
0x89, 0x9a, 0xab, 0xbc, 0xcd, 0xde, 0xef, 0xf0,
0x10, 0x32, 0x54, 0x76, 0x98, 0xba, 0xdc, 0xfe },
{ 0x02, 0x13, 0x24, 0x35, 0x46, 0x57, 0x68, 0x79,
0x8a, 0x9b, 0xac, 0xbd, 0xce, 0xdf, 0xe0, 0xf1 },
{ 0xc8, 0x24, 0x18, 0x16, 0xf0, 0xd7, 0xe4, 0x89,
0x20, 0xad, 0x16, 0xa1, 0x67, 0x4e, 0x5d, 0x48 }
}
};
unsigned char tmp[2][16];
int x, y, err;
symmetric_key key;
for (x = 0; x < (int)(sizeof(tests) / sizeof(tests[0])); x++) {
/* setup key */
if ((err = rc6_setup(tests[x].key, tests[x].keylen, 0, &key)) != CRYPT_OK) {
return err;
}
/* encrypt and decrypt */
rc6_ecb_encrypt(tests[x].pt, tmp[0], &key);
rc6_ecb_decrypt(tmp[0], tmp[1], &key);
/* compare */
if (memcmp(tmp[0], tests[x].ct, 16) || memcmp(tmp[1], tests[x].pt, 16)) {
#if 0
printf("\n\nFailed test %d\n", x);
if (memcmp(tmp[0], tests[x].ct, 16)) {
printf("Ciphertext: ");
for (y = 0; y < 16; y++) printf("%02x ", tmp[0][y]);
printf("\nExpected : ");
for (y = 0; y < 16; y++) printf("%02x ", tests[x].ct[y]);
printf("\n");
}
if (memcmp(tmp[1], tests[x].pt, 16)) {
printf("Plaintext: ");
for (y = 0; y < 16; y++) printf("%02x ", tmp[0][y]);
printf("\nExpected : ");
for (y = 0; y < 16; y++) printf("%02x ", tests[x].pt[y]);
printf("\n");
}
#endif
return CRYPT_FAIL_TESTVECTOR;
}
/* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */
for (y = 0; y < 16; y++) tmp[0][y] = 0;
for (y = 0; y < 1000; y++) rc6_ecb_encrypt(tmp[0], tmp[0], &key);
for (y = 0; y < 1000; y++) rc6_ecb_decrypt(tmp[0], tmp[0], &key);
for (y = 0; y < 16; y++) if (tmp[0][y] != 0) return CRYPT_FAIL_TESTVECTOR;
}
return CRYPT_OK;
#endif
}
/** Terminate the context
@param skey The scheduled key
*/
void rc6_done(symmetric_key *skey)
{
}
/**
Gets suitable key size
@param keysize [in/out] The length of the recommended key (in bytes). This function will store the suitable size back in this variable.
@return CRYPT_OK if the input key size is acceptable.
*/
int rc6_keysize(int *keysize)
{
LTC_ARGCHK(keysize != NULL);
if (*keysize < 8) {
return CRYPT_INVALID_KEYSIZE;
} else if (*keysize > 128) {
*keysize = 128;
}
return CRYPT_OK;
}
#endif /*RC6*/
/* $Source: /cvs/libtom/libtomcrypt/src/ciphers/rc6.c,v $ */
/* $Revision: 1.7 $ */
/* $Date: 2005/05/05 14:35:58 $ */
|