summaryrefslogtreecommitdiffhomepage
path: root/libtomcrypt/src/ciphers/aes/aes.c
diff options
context:
space:
mode:
Diffstat (limited to 'libtomcrypt/src/ciphers/aes/aes.c')
-rw-r--r--libtomcrypt/src/ciphers/aes/aes.c762
1 files changed, 762 insertions, 0 deletions
diff --git a/libtomcrypt/src/ciphers/aes/aes.c b/libtomcrypt/src/ciphers/aes/aes.c
new file mode 100644
index 0000000..74798e8
--- /dev/null
+++ b/libtomcrypt/src/ciphers/aes/aes.c
@@ -0,0 +1,762 @@
+/* LibTomCrypt, modular cryptographic library -- Tom St Denis
+ *
+ * LibTomCrypt is a library that provides various cryptographic
+ * algorithms in a highly modular and flexible manner.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@gmail.com, http://libtomcrypt.com
+ */
+
+/* AES implementation by Tom St Denis
+ *
+ * Derived from the Public Domain source code by
+
+---
+ * rijndael-alg-fst.c
+ *
+ * @version 3.0 (December 2000)
+ *
+ * Optimised ANSI C code for the Rijndael cipher (now AES)
+ *
+ * @author Vincent Rijmen <vincent.rijmen@esat.kuleuven.ac.be>
+ * @author Antoon Bosselaers <antoon.bosselaers@esat.kuleuven.ac.be>
+ * @author Paulo Barreto <paulo.barreto@terra.com.br>
+---
+ */
+/**
+ @file aes.c
+ Implementation of AES
+*/
+
+#include "tomcrypt.h"
+
+#ifdef RIJNDAEL
+
+#ifndef ENCRYPT_ONLY
+
+#define SETUP rijndael_setup
+#define ECB_ENC rijndael_ecb_encrypt
+#define ECB_DEC rijndael_ecb_decrypt
+#define ECB_DONE rijndael_done
+#define ECB_TEST rijndael_test
+#define ECB_KS rijndael_keysize
+
+#if 0
+const struct ltc_cipher_descriptor rijndael_desc =
+{
+ "rijndael",
+ 6,
+ 16, 32, 16, 10,
+ SETUP, ECB_ENC, ECB_DEC, ECB_TEST, ECB_DONE, ECB_KS,
+ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
+};
+#endif
+
+const struct ltc_cipher_descriptor aes_desc =
+{
+ "aes",
+ 6,
+ 16, 32, 16, 10,
+ SETUP, ECB_ENC, ECB_DEC, ECB_TEST, ECB_DONE, ECB_KS,
+ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
+};
+
+#else
+
+#define SETUP rijndael_enc_setup
+#define ECB_ENC rijndael_enc_ecb_encrypt
+#define ECB_KS rijndael_enc_keysize
+#define ECB_DONE rijndael_enc_done
+
+const struct ltc_cipher_descriptor rijndael_enc_desc =
+{
+ "rijndael",
+ 6,
+ 16, 32, 16, 10,
+ SETUP, ECB_ENC, NULL, NULL, ECB_DONE, ECB_KS,
+ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
+};
+
+const struct ltc_cipher_descriptor aes_enc_desc =
+{
+ "aes",
+ 6,
+ 16, 32, 16, 10,
+ SETUP, ECB_ENC, NULL, NULL, ECB_DONE, ECB_KS,
+ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
+};
+
+#endif
+
+#include "aes_tab.c"
+
+static ulong32 setup_mix(ulong32 temp)
+{
+ return (Te4_3[byte(temp, 2)]) ^
+ (Te4_2[byte(temp, 1)]) ^
+ (Te4_1[byte(temp, 0)]) ^
+ (Te4_0[byte(temp, 3)]);
+}
+
+#ifndef ENCRYPT_ONLY
+#ifdef LTC_SMALL_CODE
+static ulong32 setup_mix2(ulong32 temp)
+{
+ return Td0(255 & Te4[byte(temp, 3)]) ^
+ Td1(255 & Te4[byte(temp, 2)]) ^
+ Td2(255 & Te4[byte(temp, 1)]) ^
+ Td3(255 & Te4[byte(temp, 0)]);
+}
+#endif
+#endif
+
+ /**
+ Initialize the AES (Rijndael) block cipher
+ @param key The symmetric key you wish to pass
+ @param keylen The key length in bytes
+ @param num_rounds The number of rounds desired (0 for default)
+ @param skey The key in as scheduled by this function.
+ @return CRYPT_OK if successful
+ */
+int SETUP(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
+{
+ int i, j;
+ ulong32 temp, *rk;
+#ifndef ENCRYPT_ONLY
+ ulong32 *rrk;
+#endif
+ LTC_ARGCHK(key != NULL);
+ LTC_ARGCHK(skey != NULL);
+
+ if (keylen != 16 && keylen != 24 && keylen != 32) {
+ return CRYPT_INVALID_KEYSIZE;
+ }
+
+ if (num_rounds != 0 && num_rounds != (10 + ((keylen/8)-2)*2)) {
+ return CRYPT_INVALID_ROUNDS;
+ }
+
+ skey->rijndael.Nr = 10 + ((keylen/8)-2)*2;
+
+ /* setup the forward key */
+ i = 0;
+ rk = skey->rijndael.eK;
+ LOAD32H(rk[0], key );
+ LOAD32H(rk[1], key + 4);
+ LOAD32H(rk[2], key + 8);
+ LOAD32H(rk[3], key + 12);
+ if (keylen == 16) {
+ j = 44;
+ for (;;) {
+ temp = rk[3];
+ rk[4] = rk[0] ^ setup_mix(temp) ^ rcon[i];
+ rk[5] = rk[1] ^ rk[4];
+ rk[6] = rk[2] ^ rk[5];
+ rk[7] = rk[3] ^ rk[6];
+ if (++i == 10) {
+ break;
+ }
+ rk += 4;
+ }
+ } else if (keylen == 24) {
+ j = 52;
+ LOAD32H(rk[4], key + 16);
+ LOAD32H(rk[5], key + 20);
+ for (;;) {
+ #ifdef _MSC_VER
+ temp = skey->rijndael.eK[rk - skey->rijndael.eK + 5];
+ #else
+ temp = rk[5];
+ #endif
+ rk[ 6] = rk[ 0] ^ setup_mix(temp) ^ rcon[i];
+ rk[ 7] = rk[ 1] ^ rk[ 6];
+ rk[ 8] = rk[ 2] ^ rk[ 7];
+ rk[ 9] = rk[ 3] ^ rk[ 8];
+ if (++i == 8) {
+ break;
+ }
+ rk[10] = rk[ 4] ^ rk[ 9];
+ rk[11] = rk[ 5] ^ rk[10];
+ rk += 6;
+ }
+ } else if (keylen == 32) {
+ j = 60;
+ LOAD32H(rk[4], key + 16);
+ LOAD32H(rk[5], key + 20);
+ LOAD32H(rk[6], key + 24);
+ LOAD32H(rk[7], key + 28);
+ for (;;) {
+ #ifdef _MSC_VER
+ temp = skey->rijndael.eK[rk - skey->rijndael.eK + 7];
+ #else
+ temp = rk[7];
+ #endif
+ rk[ 8] = rk[ 0] ^ setup_mix(temp) ^ rcon[i];
+ rk[ 9] = rk[ 1] ^ rk[ 8];
+ rk[10] = rk[ 2] ^ rk[ 9];
+ rk[11] = rk[ 3] ^ rk[10];
+ if (++i == 7) {
+ break;
+ }
+ temp = rk[11];
+ rk[12] = rk[ 4] ^ setup_mix(RORc(temp, 8));
+ rk[13] = rk[ 5] ^ rk[12];
+ rk[14] = rk[ 6] ^ rk[13];
+ rk[15] = rk[ 7] ^ rk[14];
+ rk += 8;
+ }
+ } else {
+ /* this can't happen */
+ return CRYPT_ERROR;
+ }
+
+#ifndef ENCRYPT_ONLY
+ /* setup the inverse key now */
+ rk = skey->rijndael.dK;
+ rrk = skey->rijndael.eK + j - 4;
+
+ /* apply the inverse MixColumn transform to all round keys but the first and the last: */
+ /* copy first */
+ *rk++ = *rrk++;
+ *rk++ = *rrk++;
+ *rk++ = *rrk++;
+ *rk = *rrk;
+ rk -= 3; rrk -= 3;
+
+ for (i = 1; i < skey->rijndael.Nr; i++) {
+ rrk -= 4;
+ rk += 4;
+ #ifdef LTC_SMALL_CODE
+ temp = rrk[0];
+ rk[0] = setup_mix2(temp);
+ temp = rrk[1];
+ rk[1] = setup_mix2(temp);
+ temp = rrk[2];
+ rk[2] = setup_mix2(temp);
+ temp = rrk[3];
+ rk[3] = setup_mix2(temp);
+ #else
+ temp = rrk[0];
+ rk[0] =
+ Tks0[byte(temp, 3)] ^
+ Tks1[byte(temp, 2)] ^
+ Tks2[byte(temp, 1)] ^
+ Tks3[byte(temp, 0)];
+ temp = rrk[1];
+ rk[1] =
+ Tks0[byte(temp, 3)] ^
+ Tks1[byte(temp, 2)] ^
+ Tks2[byte(temp, 1)] ^
+ Tks3[byte(temp, 0)];
+ temp = rrk[2];
+ rk[2] =
+ Tks0[byte(temp, 3)] ^
+ Tks1[byte(temp, 2)] ^
+ Tks2[byte(temp, 1)] ^
+ Tks3[byte(temp, 0)];
+ temp = rrk[3];
+ rk[3] =
+ Tks0[byte(temp, 3)] ^
+ Tks1[byte(temp, 2)] ^
+ Tks2[byte(temp, 1)] ^
+ Tks3[byte(temp, 0)];
+ #endif
+
+ }
+
+ /* copy last */
+ rrk -= 4;
+ rk += 4;
+ *rk++ = *rrk++;
+ *rk++ = *rrk++;
+ *rk++ = *rrk++;
+ *rk = *rrk;
+#endif /* ENCRYPT_ONLY */
+
+ return CRYPT_OK;
+}
+
+/**
+ Encrypts a block of text with AES
+ @param pt The input plaintext (16 bytes)
+ @param ct The output ciphertext (16 bytes)
+ @param skey The key as scheduled
+ @return CRYPT_OK if successful
+*/
+#ifdef LTC_CLEAN_STACK
+static int _rijndael_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey)
+#else
+int ECB_ENC(const unsigned char *pt, unsigned char *ct, symmetric_key *skey)
+#endif
+{
+ ulong32 s0, s1, s2, s3, t0, t1, t2, t3, *rk;
+ int Nr, r;
+
+ LTC_ARGCHK(pt != NULL);
+ LTC_ARGCHK(ct != NULL);
+ LTC_ARGCHK(skey != NULL);
+
+ Nr = skey->rijndael.Nr;
+ rk = skey->rijndael.eK;
+
+ /*
+ * map byte array block to cipher state
+ * and add initial round key:
+ */
+ LOAD32H(s0, pt ); s0 ^= rk[0];
+ LOAD32H(s1, pt + 4); s1 ^= rk[1];
+ LOAD32H(s2, pt + 8); s2 ^= rk[2];
+ LOAD32H(s3, pt + 12); s3 ^= rk[3];
+
+#ifdef LTC_SMALL_CODE
+
+ for (r = 0; ; r++) {
+ rk += 4;
+ t0 =
+ Te0(byte(s0, 3)) ^
+ Te1(byte(s1, 2)) ^
+ Te2(byte(s2, 1)) ^
+ Te3(byte(s3, 0)) ^
+ rk[0];
+ t1 =
+ Te0(byte(s1, 3)) ^
+ Te1(byte(s2, 2)) ^
+ Te2(byte(s3, 1)) ^
+ Te3(byte(s0, 0)) ^
+ rk[1];
+ t2 =
+ Te0(byte(s2, 3)) ^
+ Te1(byte(s3, 2)) ^
+ Te2(byte(s0, 1)) ^
+ Te3(byte(s1, 0)) ^
+ rk[2];
+ t3 =
+ Te0(byte(s3, 3)) ^
+ Te1(byte(s0, 2)) ^
+ Te2(byte(s1, 1)) ^
+ Te3(byte(s2, 0)) ^
+ rk[3];
+ if (r == Nr-2) {
+ break;
+ }
+ s0 = t0; s1 = t1; s2 = t2; s3 = t3;
+ }
+ rk += 4;
+
+#else
+
+ /*
+ * Nr - 1 full rounds:
+ */
+ r = Nr >> 1;
+ for (;;) {
+ t0 =
+ Te0(byte(s0, 3)) ^
+ Te1(byte(s1, 2)) ^
+ Te2(byte(s2, 1)) ^
+ Te3(byte(s3, 0)) ^
+ rk[4];
+ t1 =
+ Te0(byte(s1, 3)) ^
+ Te1(byte(s2, 2)) ^
+ Te2(byte(s3, 1)) ^
+ Te3(byte(s0, 0)) ^
+ rk[5];
+ t2 =
+ Te0(byte(s2, 3)) ^
+ Te1(byte(s3, 2)) ^
+ Te2(byte(s0, 1)) ^
+ Te3(byte(s1, 0)) ^
+ rk[6];
+ t3 =
+ Te0(byte(s3, 3)) ^
+ Te1(byte(s0, 2)) ^
+ Te2(byte(s1, 1)) ^
+ Te3(byte(s2, 0)) ^
+ rk[7];
+
+ rk += 8;
+ if (--r == 0) {
+ break;
+ }
+
+ s0 =
+ Te0(byte(t0, 3)) ^
+ Te1(byte(t1, 2)) ^
+ Te2(byte(t2, 1)) ^
+ Te3(byte(t3, 0)) ^
+ rk[0];
+ s1 =
+ Te0(byte(t1, 3)) ^
+ Te1(byte(t2, 2)) ^
+ Te2(byte(t3, 1)) ^
+ Te3(byte(t0, 0)) ^
+ rk[1];
+ s2 =
+ Te0(byte(t2, 3)) ^
+ Te1(byte(t3, 2)) ^
+ Te2(byte(t0, 1)) ^
+ Te3(byte(t1, 0)) ^
+ rk[2];
+ s3 =
+ Te0(byte(t3, 3)) ^
+ Te1(byte(t0, 2)) ^
+ Te2(byte(t1, 1)) ^
+ Te3(byte(t2, 0)) ^
+ rk[3];
+ }
+
+#endif
+
+ /*
+ * apply last round and
+ * map cipher state to byte array block:
+ */
+ s0 =
+ (Te4_3[byte(t0, 3)]) ^
+ (Te4_2[byte(t1, 2)]) ^
+ (Te4_1[byte(t2, 1)]) ^
+ (Te4_0[byte(t3, 0)]) ^
+ rk[0];
+ STORE32H(s0, ct);
+ s1 =
+ (Te4_3[byte(t1, 3)]) ^
+ (Te4_2[byte(t2, 2)]) ^
+ (Te4_1[byte(t3, 1)]) ^
+ (Te4_0[byte(t0, 0)]) ^
+ rk[1];
+ STORE32H(s1, ct+4);
+ s2 =
+ (Te4_3[byte(t2, 3)]) ^
+ (Te4_2[byte(t3, 2)]) ^
+ (Te4_1[byte(t0, 1)]) ^
+ (Te4_0[byte(t1, 0)]) ^
+ rk[2];
+ STORE32H(s2, ct+8);
+ s3 =
+ (Te4_3[byte(t3, 3)]) ^
+ (Te4_2[byte(t0, 2)]) ^
+ (Te4_1[byte(t1, 1)]) ^
+ (Te4_0[byte(t2, 0)]) ^
+ rk[3];
+ STORE32H(s3, ct+12);
+
+ return CRYPT_OK;
+}
+
+#ifdef LTC_CLEAN_STACK
+int ECB_ENC(const unsigned char *pt, unsigned char *ct, symmetric_key *skey)
+{
+ int err = _rijndael_ecb_encrypt(pt, ct, skey);
+ burn_stack(sizeof(unsigned long)*8 + sizeof(unsigned long*) + sizeof(int)*2);
+ return err;
+}
+#endif
+
+#ifndef ENCRYPT_ONLY
+
+/**
+ Decrypts a block of text with AES
+ @param ct The input ciphertext (16 bytes)
+ @param pt The output plaintext (16 bytes)
+ @param skey The key as scheduled
+ @return CRYPT_OK if successful
+*/
+#ifdef LTC_CLEAN_STACK
+static int _rijndael_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey)
+#else
+int ECB_DEC(const unsigned char *ct, unsigned char *pt, symmetric_key *skey)
+#endif
+{
+ ulong32 s0, s1, s2, s3, t0, t1, t2, t3, *rk;
+ int Nr, r;
+
+ LTC_ARGCHK(pt != NULL);
+ LTC_ARGCHK(ct != NULL);
+ LTC_ARGCHK(skey != NULL);
+
+ Nr = skey->rijndael.Nr;
+ rk = skey->rijndael.dK;
+
+ /*
+ * map byte array block to cipher state
+ * and add initial round key:
+ */
+ LOAD32H(s0, ct ); s0 ^= rk[0];
+ LOAD32H(s1, ct + 4); s1 ^= rk[1];
+ LOAD32H(s2, ct + 8); s2 ^= rk[2];
+ LOAD32H(s3, ct + 12); s3 ^= rk[3];
+
+#ifdef LTC_SMALL_CODE
+ for (r = 0; ; r++) {
+ rk += 4;
+ t0 =
+ Td0(byte(s0, 3)) ^
+ Td1(byte(s3, 2)) ^
+ Td2(byte(s2, 1)) ^
+ Td3(byte(s1, 0)) ^
+ rk[0];
+ t1 =
+ Td0(byte(s1, 3)) ^
+ Td1(byte(s0, 2)) ^
+ Td2(byte(s3, 1)) ^
+ Td3(byte(s2, 0)) ^
+ rk[1];
+ t2 =
+ Td0(byte(s2, 3)) ^
+ Td1(byte(s1, 2)) ^
+ Td2(byte(s0, 1)) ^
+ Td3(byte(s3, 0)) ^
+ rk[2];
+ t3 =
+ Td0(byte(s3, 3)) ^
+ Td1(byte(s2, 2)) ^
+ Td2(byte(s1, 1)) ^
+ Td3(byte(s0, 0)) ^
+ rk[3];
+ if (r == Nr-2) {
+ break;
+ }
+ s0 = t0; s1 = t1; s2 = t2; s3 = t3;
+ }
+ rk += 4;
+
+#else
+
+ /*
+ * Nr - 1 full rounds:
+ */
+ r = Nr >> 1;
+ for (;;) {
+
+ t0 =
+ Td0(byte(s0, 3)) ^
+ Td1(byte(s3, 2)) ^
+ Td2(byte(s2, 1)) ^
+ Td3(byte(s1, 0)) ^
+ rk[4];
+ t1 =
+ Td0(byte(s1, 3)) ^
+ Td1(byte(s0, 2)) ^
+ Td2(byte(s3, 1)) ^
+ Td3(byte(s2, 0)) ^
+ rk[5];
+ t2 =
+ Td0(byte(s2, 3)) ^
+ Td1(byte(s1, 2)) ^
+ Td2(byte(s0, 1)) ^
+ Td3(byte(s3, 0)) ^
+ rk[6];
+ t3 =
+ Td0(byte(s3, 3)) ^
+ Td1(byte(s2, 2)) ^
+ Td2(byte(s1, 1)) ^
+ Td3(byte(s0, 0)) ^
+ rk[7];
+
+ rk += 8;
+ if (--r == 0) {
+ break;
+ }
+
+
+ s0 =
+ Td0(byte(t0, 3)) ^
+ Td1(byte(t3, 2)) ^
+ Td2(byte(t2, 1)) ^
+ Td3(byte(t1, 0)) ^
+ rk[0];
+ s1 =
+ Td0(byte(t1, 3)) ^
+ Td1(byte(t0, 2)) ^
+ Td2(byte(t3, 1)) ^
+ Td3(byte(t2, 0)) ^
+ rk[1];
+ s2 =
+ Td0(byte(t2, 3)) ^
+ Td1(byte(t1, 2)) ^
+ Td2(byte(t0, 1)) ^
+ Td3(byte(t3, 0)) ^
+ rk[2];
+ s3 =
+ Td0(byte(t3, 3)) ^
+ Td1(byte(t2, 2)) ^
+ Td2(byte(t1, 1)) ^
+ Td3(byte(t0, 0)) ^
+ rk[3];
+ }
+#endif
+
+ /*
+ * apply last round and
+ * map cipher state to byte array block:
+ */
+ s0 =
+ (Td4[byte(t0, 3)] & 0xff000000) ^
+ (Td4[byte(t3, 2)] & 0x00ff0000) ^
+ (Td4[byte(t2, 1)] & 0x0000ff00) ^
+ (Td4[byte(t1, 0)] & 0x000000ff) ^
+ rk[0];
+ STORE32H(s0, pt);
+ s1 =
+ (Td4[byte(t1, 3)] & 0xff000000) ^
+ (Td4[byte(t0, 2)] & 0x00ff0000) ^
+ (Td4[byte(t3, 1)] & 0x0000ff00) ^
+ (Td4[byte(t2, 0)] & 0x000000ff) ^
+ rk[1];
+ STORE32H(s1, pt+4);
+ s2 =
+ (Td4[byte(t2, 3)] & 0xff000000) ^
+ (Td4[byte(t1, 2)] & 0x00ff0000) ^
+ (Td4[byte(t0, 1)] & 0x0000ff00) ^
+ (Td4[byte(t3, 0)] & 0x000000ff) ^
+ rk[2];
+ STORE32H(s2, pt+8);
+ s3 =
+ (Td4[byte(t3, 3)] & 0xff000000) ^
+ (Td4[byte(t2, 2)] & 0x00ff0000) ^
+ (Td4[byte(t1, 1)] & 0x0000ff00) ^
+ (Td4[byte(t0, 0)] & 0x000000ff) ^
+ rk[3];
+ STORE32H(s3, pt+12);
+
+ return CRYPT_OK;
+}
+
+
+#ifdef LTC_CLEAN_STACK
+int ECB_DEC(const unsigned char *ct, unsigned char *pt, symmetric_key *skey)
+{
+ int err = _rijndael_ecb_decrypt(ct, pt, skey);
+ burn_stack(sizeof(unsigned long)*8 + sizeof(unsigned long*) + sizeof(int)*2);
+ return err;
+}
+#endif
+
+/**
+ Performs a self-test of the AES block cipher
+ @return CRYPT_OK if functional, CRYPT_NOP if self-test has been disabled
+*/
+int ECB_TEST(void)
+{
+ #ifndef LTC_TEST
+ return CRYPT_NOP;
+ #else
+ int err;
+ static const struct {
+ int keylen;
+ unsigned char key[32], pt[16], ct[16];
+ } tests[] = {
+ { 16,
+ { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
+ 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f },
+ { 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
+ 0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff },
+ { 0x69, 0xc4, 0xe0, 0xd8, 0x6a, 0x7b, 0x04, 0x30,
+ 0xd8, 0xcd, 0xb7, 0x80, 0x70, 0xb4, 0xc5, 0x5a }
+ }, {
+ 24,
+ { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
+ 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
+ 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17 },
+ { 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
+ 0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff },
+ { 0xdd, 0xa9, 0x7c, 0xa4, 0x86, 0x4c, 0xdf, 0xe0,
+ 0x6e, 0xaf, 0x70, 0xa0, 0xec, 0x0d, 0x71, 0x91 }
+ }, {
+ 32,
+ { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
+ 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
+ 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
+ 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f },
+ { 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
+ 0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff },
+ { 0x8e, 0xa2, 0xb7, 0xca, 0x51, 0x67, 0x45, 0xbf,
+ 0xea, 0xfc, 0x49, 0x90, 0x4b, 0x49, 0x60, 0x89 }
+ }
+ };
+
+ symmetric_key key;
+ unsigned char tmp[2][16];
+ int i, y;
+
+ for (i = 0; i < (int)(sizeof(tests)/sizeof(tests[0])); i++) {
+ zeromem(&key, sizeof(key));
+ if ((err = rijndael_setup(tests[i].key, tests[i].keylen, 0, &key)) != CRYPT_OK) {
+ return err;
+ }
+
+ rijndael_ecb_encrypt(tests[i].pt, tmp[0], &key);
+ rijndael_ecb_decrypt(tmp[0], tmp[1], &key);
+ if (XMEMCMP(tmp[0], tests[i].ct, 16) || XMEMCMP(tmp[1], tests[i].pt, 16)) {
+#if 0
+ printf("\n\nTest %d failed\n", i);
+ if (XMEMCMP(tmp[0], tests[i].ct, 16)) {
+ printf("CT: ");
+ for (i = 0; i < 16; i++) {
+ printf("%02x ", tmp[0][i]);
+ }
+ printf("\n");
+ } else {
+ printf("PT: ");
+ for (i = 0; i < 16; i++) {
+ printf("%02x ", tmp[1][i]);
+ }
+ printf("\n");
+ }
+#endif
+ return CRYPT_FAIL_TESTVECTOR;
+ }
+
+ /* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */
+ for (y = 0; y < 16; y++) tmp[0][y] = 0;
+ for (y = 0; y < 1000; y++) rijndael_ecb_encrypt(tmp[0], tmp[0], &key);
+ for (y = 0; y < 1000; y++) rijndael_ecb_decrypt(tmp[0], tmp[0], &key);
+ for (y = 0; y < 16; y++) if (tmp[0][y] != 0) return CRYPT_FAIL_TESTVECTOR;
+ }
+ return CRYPT_OK;
+ #endif
+}
+
+#endif /* ENCRYPT_ONLY */
+
+
+/** Terminate the context
+ @param skey The scheduled key
+*/
+void ECB_DONE(symmetric_key *skey)
+{
+}
+
+
+/**
+ Gets suitable key size
+ @param keysize [in/out] The length of the recommended key (in bytes). This function will store the suitable size back in this variable.
+ @return CRYPT_OK if the input key size is acceptable.
+*/
+int ECB_KS(int *keysize)
+{
+ LTC_ARGCHK(keysize != NULL);
+
+ if (*keysize < 16)
+ return CRYPT_INVALID_KEYSIZE;
+ if (*keysize < 24) {
+ *keysize = 16;
+ return CRYPT_OK;
+ } else if (*keysize < 32) {
+ *keysize = 24;
+ return CRYPT_OK;
+ } else {
+ *keysize = 32;
+ return CRYPT_OK;
+ }
+}
+
+#endif
+
+
+/* $Source: /cvs/libtom/libtomcrypt/src/ciphers/aes/aes.c,v $ */
+/* $Revision: 1.14 $ */
+/* $Date: 2006/11/08 23:01:06 $ */