summaryrefslogtreecommitdiffhomepage
path: root/libtommath/tommath.h
diff options
context:
space:
mode:
authorMatt Johnston <matt@ucc.asn.au>2007-02-03 08:20:34 +0000
committerMatt Johnston <matt@ucc.asn.au>2007-02-03 08:20:34 +0000
commitd9aeb2773e236e662c8b493f4bcee978f9908d7c (patch)
treebac48e388bf3ac739ae14cdf98da0eb4bb9d17bf /libtommath/tommath.h
parent056b92bd4c8a42ce1843493310d382159166edb8 (diff)
parentc5fd7dd5548f28e32d846e39d17e5c4de4e769af (diff)
merge of '5fdf69ca60d1683cdd9f4c2595134bed26394834'
and '6b61c50f4cf888bea302ac8fcf5dbb573b443251' --HG-- extra : convert_revision : b1dd3b94e60a07a176dba2b035ac79968595990a
Diffstat (limited to 'libtommath/tommath.h')
-rw-r--r--libtommath/tommath.h584
1 files changed, 584 insertions, 0 deletions
diff --git a/libtommath/tommath.h b/libtommath/tommath.h
new file mode 100644
index 0000000..1ead3d0
--- /dev/null
+++ b/libtommath/tommath.h
@@ -0,0 +1,584 @@
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
+ */
+#ifndef BN_H_
+#define BN_H_
+
+#include <stdio.h>
+#include <string.h>
+#include <stdlib.h>
+#include <ctype.h>
+#include <limits.h>
+
+#include "tommath_class.h"
+
+#ifndef MIN
+ #define MIN(x,y) ((x)<(y)?(x):(y))
+#endif
+
+#ifndef MAX
+ #define MAX(x,y) ((x)>(y)?(x):(y))
+#endif
+
+#ifdef __cplusplus
+extern "C" {
+
+/* C++ compilers don't like assigning void * to mp_digit * */
+#define OPT_CAST(x) (x *)
+
+#else
+
+/* C on the other hand doesn't care */
+#define OPT_CAST(x)
+
+#endif
+
+
+/* detect 64-bit mode if possible */
+#if defined(__x86_64__)
+ #if !(defined(MP_64BIT) && defined(MP_16BIT) && defined(MP_8BIT))
+ #define MP_64BIT
+ #endif
+#endif
+
+/* some default configurations.
+ *
+ * A "mp_digit" must be able to hold DIGIT_BIT + 1 bits
+ * A "mp_word" must be able to hold 2*DIGIT_BIT + 1 bits
+ *
+ * At the very least a mp_digit must be able to hold 7 bits
+ * [any size beyond that is ok provided it doesn't overflow the data type]
+ */
+#ifdef MP_8BIT
+ typedef unsigned char mp_digit;
+ typedef unsigned short mp_word;
+#elif defined(MP_16BIT)
+ typedef unsigned short mp_digit;
+ typedef unsigned long mp_word;
+#elif defined(MP_64BIT)
+ /* for GCC only on supported platforms */
+#ifndef CRYPT
+ typedef unsigned long long ulong64;
+ typedef signed long long long64;
+#endif
+
+ typedef unsigned long mp_digit;
+ typedef unsigned long mp_word __attribute__ ((mode(TI)));
+
+ #define DIGIT_BIT 60
+#else
+ /* this is the default case, 28-bit digits */
+
+ /* this is to make porting into LibTomCrypt easier :-) */
+#ifndef CRYPT
+ #if defined(_MSC_VER) || defined(__BORLANDC__)
+ typedef unsigned __int64 ulong64;
+ typedef signed __int64 long64;
+ #else
+ typedef unsigned long long ulong64;
+ typedef signed long long long64;
+ #endif
+#endif
+
+ typedef unsigned long mp_digit;
+ typedef ulong64 mp_word;
+
+#ifdef MP_31BIT
+ /* this is an extension that uses 31-bit digits */
+ #define DIGIT_BIT 31
+#else
+ /* default case is 28-bit digits, defines MP_28BIT as a handy macro to test */
+ #define DIGIT_BIT 28
+ #define MP_28BIT
+#endif
+#endif
+
+/* define heap macros */
+#ifndef CRYPT
+ /* default to libc stuff */
+ #ifndef XMALLOC
+ #define XMALLOC malloc
+ #define XFREE free
+ #define XREALLOC realloc
+ #define XCALLOC calloc
+ #else
+ /* prototypes for our heap functions */
+ extern void *XMALLOC(size_t n);
+ extern void *XREALLOC(void *p, size_t n);
+ extern void *XCALLOC(size_t n, size_t s);
+ extern void XFREE(void *p);
+ #endif
+#endif
+
+
+/* otherwise the bits per digit is calculated automatically from the size of a mp_digit */
+#ifndef DIGIT_BIT
+ #define DIGIT_BIT ((int)((CHAR_BIT * sizeof(mp_digit) - 1))) /* bits per digit */
+#endif
+
+#define MP_DIGIT_BIT DIGIT_BIT
+#define MP_MASK ((((mp_digit)1)<<((mp_digit)DIGIT_BIT))-((mp_digit)1))
+#define MP_DIGIT_MAX MP_MASK
+
+/* equalities */
+#define MP_LT -1 /* less than */
+#define MP_EQ 0 /* equal to */
+#define MP_GT 1 /* greater than */
+
+#define MP_ZPOS 0 /* positive integer */
+#define MP_NEG 1 /* negative */
+
+#define MP_OKAY 0 /* ok result */
+#define MP_MEM -2 /* out of mem */
+#define MP_VAL -3 /* invalid input */
+#define MP_RANGE MP_VAL
+
+#define MP_YES 1 /* yes response */
+#define MP_NO 0 /* no response */
+
+/* Primality generation flags */
+#define LTM_PRIME_BBS 0x0001 /* BBS style prime */
+#define LTM_PRIME_SAFE 0x0002 /* Safe prime (p-1)/2 == prime */
+#define LTM_PRIME_2MSB_ON 0x0008 /* force 2nd MSB to 1 */
+
+typedef int mp_err;
+
+/* you'll have to tune these... */
+extern int KARATSUBA_MUL_CUTOFF,
+ KARATSUBA_SQR_CUTOFF,
+ TOOM_MUL_CUTOFF,
+ TOOM_SQR_CUTOFF;
+
+/* define this to use lower memory usage routines (exptmods mostly) */
+/* #define MP_LOW_MEM */
+
+/* default precision */
+#ifndef MP_PREC
+ #ifndef MP_LOW_MEM
+ #define MP_PREC 32 /* default digits of precision */
+ #else
+ #define MP_PREC 8 /* default digits of precision */
+ #endif
+#endif
+
+/* size of comba arrays, should be at least 2 * 2**(BITS_PER_WORD - BITS_PER_DIGIT*2) */
+#define MP_WARRAY (1 << (sizeof(mp_word) * CHAR_BIT - 2 * DIGIT_BIT + 1))
+
+/* the infamous mp_int structure */
+typedef struct {
+ int used, alloc, sign;
+ mp_digit *dp;
+} mp_int;
+
+/* callback for mp_prime_random, should fill dst with random bytes and return how many read [upto len] */
+typedef int ltm_prime_callback(unsigned char *dst, int len, void *dat);
+
+
+#define USED(m) ((m)->used)
+#define DIGIT(m,k) ((m)->dp[(k)])
+#define SIGN(m) ((m)->sign)
+
+/* error code to char* string */
+char *mp_error_to_string(int code);
+
+/* ---> init and deinit bignum functions <--- */
+/* init a bignum */
+int mp_init(mp_int *a);
+
+/* free a bignum */
+void mp_clear(mp_int *a);
+
+/* init a null terminated series of arguments */
+int mp_init_multi(mp_int *mp, ...);
+
+/* clear a null terminated series of arguments */
+void mp_clear_multi(mp_int *mp, ...);
+
+/* exchange two ints */
+void mp_exch(mp_int *a, mp_int *b);
+
+/* shrink ram required for a bignum */
+int mp_shrink(mp_int *a);
+
+/* grow an int to a given size */
+int mp_grow(mp_int *a, int size);
+
+/* init to a given number of digits */
+int mp_init_size(mp_int *a, int size);
+
+/* ---> Basic Manipulations <--- */
+#define mp_iszero(a) (((a)->used == 0) ? MP_YES : MP_NO)
+#define mp_iseven(a) (((a)->used > 0 && (((a)->dp[0] & 1) == 0)) ? MP_YES : MP_NO)
+#define mp_isodd(a) (((a)->used > 0 && (((a)->dp[0] & 1) == 1)) ? MP_YES : MP_NO)
+
+/* set to zero */
+void mp_zero(mp_int *a);
+
+/* set to a digit */
+void mp_set(mp_int *a, mp_digit b);
+
+/* set a 32-bit const */
+int mp_set_int(mp_int *a, unsigned long b);
+
+/* get a 32-bit value */
+unsigned long mp_get_int(mp_int * a);
+
+/* initialize and set a digit */
+int mp_init_set (mp_int * a, mp_digit b);
+
+/* initialize and set 32-bit value */
+int mp_init_set_int (mp_int * a, unsigned long b);
+
+/* copy, b = a */
+int mp_copy(mp_int *a, mp_int *b);
+
+/* inits and copies, a = b */
+int mp_init_copy(mp_int *a, mp_int *b);
+
+/* trim unused digits */
+void mp_clamp(mp_int *a);
+
+/* ---> digit manipulation <--- */
+
+/* right shift by "b" digits */
+void mp_rshd(mp_int *a, int b);
+
+/* left shift by "b" digits */
+int mp_lshd(mp_int *a, int b);
+
+/* c = a / 2**b */
+int mp_div_2d(mp_int *a, int b, mp_int *c, mp_int *d);
+
+/* b = a/2 */
+int mp_div_2(mp_int *a, mp_int *b);
+
+/* c = a * 2**b */
+int mp_mul_2d(mp_int *a, int b, mp_int *c);
+
+/* b = a*2 */
+int mp_mul_2(mp_int *a, mp_int *b);
+
+/* c = a mod 2**d */
+int mp_mod_2d(mp_int *a, int b, mp_int *c);
+
+/* computes a = 2**b */
+int mp_2expt(mp_int *a, int b);
+
+/* Counts the number of lsbs which are zero before the first zero bit */
+int mp_cnt_lsb(mp_int *a);
+
+/* I Love Earth! */
+
+/* makes a pseudo-random int of a given size */
+int mp_rand(mp_int *a, int digits);
+
+/* ---> binary operations <--- */
+/* c = a XOR b */
+int mp_xor(mp_int *a, mp_int *b, mp_int *c);
+
+/* c = a OR b */
+int mp_or(mp_int *a, mp_int *b, mp_int *c);
+
+/* c = a AND b */
+int mp_and(mp_int *a, mp_int *b, mp_int *c);
+
+/* ---> Basic arithmetic <--- */
+
+/* b = -a */
+int mp_neg(mp_int *a, mp_int *b);
+
+/* b = |a| */
+int mp_abs(mp_int *a, mp_int *b);
+
+/* compare a to b */
+int mp_cmp(mp_int *a, mp_int *b);
+
+/* compare |a| to |b| */
+int mp_cmp_mag(mp_int *a, mp_int *b);
+
+/* c = a + b */
+int mp_add(mp_int *a, mp_int *b, mp_int *c);
+
+/* c = a - b */
+int mp_sub(mp_int *a, mp_int *b, mp_int *c);
+
+/* c = a * b */
+int mp_mul(mp_int *a, mp_int *b, mp_int *c);
+
+/* b = a*a */
+int mp_sqr(mp_int *a, mp_int *b);
+
+/* a/b => cb + d == a */
+int mp_div(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
+
+/* c = a mod b, 0 <= c < b */
+int mp_mod(mp_int *a, mp_int *b, mp_int *c);
+
+/* ---> single digit functions <--- */
+
+/* compare against a single digit */
+int mp_cmp_d(mp_int *a, mp_digit b);
+
+/* c = a + b */
+int mp_add_d(mp_int *a, mp_digit b, mp_int *c);
+
+/* c = a - b */
+int mp_sub_d(mp_int *a, mp_digit b, mp_int *c);
+
+/* c = a * b */
+int mp_mul_d(mp_int *a, mp_digit b, mp_int *c);
+
+/* a/b => cb + d == a */
+int mp_div_d(mp_int *a, mp_digit b, mp_int *c, mp_digit *d);
+
+/* a/3 => 3c + d == a */
+int mp_div_3(mp_int *a, mp_int *c, mp_digit *d);
+
+/* c = a**b */
+int mp_expt_d(mp_int *a, mp_digit b, mp_int *c);
+
+/* c = a mod b, 0 <= c < b */
+int mp_mod_d(mp_int *a, mp_digit b, mp_digit *c);
+
+/* ---> number theory <--- */
+
+/* d = a + b (mod c) */
+int mp_addmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
+
+/* d = a - b (mod c) */
+int mp_submod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
+
+/* d = a * b (mod c) */
+int mp_mulmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
+
+/* c = a * a (mod b) */
+int mp_sqrmod(mp_int *a, mp_int *b, mp_int *c);
+
+/* c = 1/a (mod b) */
+int mp_invmod(mp_int *a, mp_int *b, mp_int *c);
+
+/* c = (a, b) */
+int mp_gcd(mp_int *a, mp_int *b, mp_int *c);
+
+/* produces value such that U1*a + U2*b = U3 */
+int mp_exteuclid(mp_int *a, mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3);
+
+/* c = [a, b] or (a*b)/(a, b) */
+int mp_lcm(mp_int *a, mp_int *b, mp_int *c);
+
+/* finds one of the b'th root of a, such that |c|**b <= |a|
+ *
+ * returns error if a < 0 and b is even
+ */
+int mp_n_root(mp_int *a, mp_digit b, mp_int *c);
+
+/* special sqrt algo */
+int mp_sqrt(mp_int *arg, mp_int *ret);
+
+/* is number a square? */
+int mp_is_square(mp_int *arg, int *ret);
+
+/* computes the jacobi c = (a | n) (or Legendre if b is prime) */
+int mp_jacobi(mp_int *a, mp_int *n, int *c);
+
+/* used to setup the Barrett reduction for a given modulus b */
+int mp_reduce_setup(mp_int *a, mp_int *b);
+
+/* Barrett Reduction, computes a (mod b) with a precomputed value c
+ *
+ * Assumes that 0 < a <= b*b, note if 0 > a > -(b*b) then you can merely
+ * compute the reduction as -1 * mp_reduce(mp_abs(a)) [pseudo code].
+ */
+int mp_reduce(mp_int *a, mp_int *b, mp_int *c);
+
+/* setups the montgomery reduction */
+int mp_montgomery_setup(mp_int *a, mp_digit *mp);
+
+/* computes a = B**n mod b without division or multiplication useful for
+ * normalizing numbers in a Montgomery system.
+ */
+int mp_montgomery_calc_normalization(mp_int *a, mp_int *b);
+
+/* computes x/R == x (mod N) via Montgomery Reduction */
+int mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp);
+
+/* returns 1 if a is a valid DR modulus */
+int mp_dr_is_modulus(mp_int *a);
+
+/* sets the value of "d" required for mp_dr_reduce */
+void mp_dr_setup(mp_int *a, mp_digit *d);
+
+/* reduces a modulo b using the Diminished Radix method */
+int mp_dr_reduce(mp_int *a, mp_int *b, mp_digit mp);
+
+/* returns true if a can be reduced with mp_reduce_2k */
+int mp_reduce_is_2k(mp_int *a);
+
+/* determines k value for 2k reduction */
+int mp_reduce_2k_setup(mp_int *a, mp_digit *d);
+
+/* reduces a modulo b where b is of the form 2**p - k [0 <= a] */
+int mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d);
+
+/* returns true if a can be reduced with mp_reduce_2k_l */
+int mp_reduce_is_2k_l(mp_int *a);
+
+/* determines k value for 2k reduction */
+int mp_reduce_2k_setup_l(mp_int *a, mp_int *d);
+
+/* reduces a modulo b where b is of the form 2**p - k [0 <= a] */
+int mp_reduce_2k_l(mp_int *a, mp_int *n, mp_int *d);
+
+/* d = a**b (mod c) */
+int mp_exptmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
+
+/* ---> Primes <--- */
+
+/* number of primes */
+#ifdef MP_8BIT
+ #define PRIME_SIZE 31
+#else
+ #define PRIME_SIZE 256
+#endif
+
+/* table of first PRIME_SIZE primes */
+extern const mp_digit ltm_prime_tab[];
+
+/* result=1 if a is divisible by one of the first PRIME_SIZE primes */
+int mp_prime_is_divisible(mp_int *a, int *result);
+
+/* performs one Fermat test of "a" using base "b".
+ * Sets result to 0 if composite or 1 if probable prime
+ */
+int mp_prime_fermat(mp_int *a, mp_int *b, int *result);
+
+/* performs one Miller-Rabin test of "a" using base "b".
+ * Sets result to 0 if composite or 1 if probable prime
+ */
+int mp_prime_miller_rabin(mp_int *a, mp_int *b, int *result);
+
+/* This gives [for a given bit size] the number of trials required
+ * such that Miller-Rabin gives a prob of failure lower than 2^-96
+ */
+int mp_prime_rabin_miller_trials(int size);
+
+/* performs t rounds of Miller-Rabin on "a" using the first
+ * t prime bases. Also performs an initial sieve of trial
+ * division. Determines if "a" is prime with probability
+ * of error no more than (1/4)**t.
+ *
+ * Sets result to 1 if probably prime, 0 otherwise
+ */
+int mp_prime_is_prime(mp_int *a, int t, int *result);
+
+/* finds the next prime after the number "a" using "t" trials
+ * of Miller-Rabin.
+ *
+ * bbs_style = 1 means the prime must be congruent to 3 mod 4
+ */
+int mp_prime_next_prime(mp_int *a, int t, int bbs_style);
+
+/* makes a truly random prime of a given size (bytes),
+ * call with bbs = 1 if you want it to be congruent to 3 mod 4
+ *
+ * You have to supply a callback which fills in a buffer with random bytes. "dat" is a parameter you can
+ * have passed to the callback (e.g. a state or something). This function doesn't use "dat" itself
+ * so it can be NULL
+ *
+ * The prime generated will be larger than 2^(8*size).
+ */
+#define mp_prime_random(a, t, size, bbs, cb, dat) mp_prime_random_ex(a, t, ((size) * 8) + 1, (bbs==1)?LTM_PRIME_BBS:0, cb, dat)
+
+/* makes a truly random prime of a given size (bits),
+ *
+ * Flags are as follows:
+ *
+ * LTM_PRIME_BBS - make prime congruent to 3 mod 4
+ * LTM_PRIME_SAFE - make sure (p-1)/2 is prime as well (implies LTM_PRIME_BBS)
+ * LTM_PRIME_2MSB_OFF - make the 2nd highest bit zero
+ * LTM_PRIME_2MSB_ON - make the 2nd highest bit one
+ *
+ * You have to supply a callback which fills in a buffer with random bytes. "dat" is a parameter you can
+ * have passed to the callback (e.g. a state or something). This function doesn't use "dat" itself
+ * so it can be NULL
+ *
+ */
+int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback cb, void *dat);
+
+/* ---> radix conversion <--- */
+int mp_count_bits(mp_int *a);
+
+int mp_unsigned_bin_size(mp_int *a);
+int mp_read_unsigned_bin(mp_int *a, const unsigned char *b, int c);
+int mp_to_unsigned_bin(mp_int *a, unsigned char *b);
+int mp_to_unsigned_bin_n (mp_int * a, unsigned char *b, unsigned long *outlen);
+
+int mp_signed_bin_size(mp_int *a);
+int mp_read_signed_bin(mp_int *a, const unsigned char *b, int c);
+int mp_to_signed_bin(mp_int *a, unsigned char *b);
+int mp_to_signed_bin_n (mp_int * a, unsigned char *b, unsigned long *outlen);
+
+int mp_read_radix(mp_int *a, const char *str, int radix);
+int mp_toradix(mp_int *a, char *str, int radix);
+int mp_toradix_n(mp_int * a, char *str, int radix, int maxlen);
+int mp_radix_size(mp_int *a, int radix, int *size);
+
+int mp_fread(mp_int *a, int radix, FILE *stream);
+int mp_fwrite(mp_int *a, int radix, FILE *stream);
+
+#define mp_read_raw(mp, str, len) mp_read_signed_bin((mp), (str), (len))
+#define mp_raw_size(mp) mp_signed_bin_size(mp)
+#define mp_toraw(mp, str) mp_to_signed_bin((mp), (str))
+#define mp_read_mag(mp, str, len) mp_read_unsigned_bin((mp), (str), (len))
+#define mp_mag_size(mp) mp_unsigned_bin_size(mp)
+#define mp_tomag(mp, str) mp_to_unsigned_bin((mp), (str))
+
+#define mp_tobinary(M, S) mp_toradix((M), (S), 2)
+#define mp_tooctal(M, S) mp_toradix((M), (S), 8)
+#define mp_todecimal(M, S) mp_toradix((M), (S), 10)
+#define mp_tohex(M, S) mp_toradix((M), (S), 16)
+
+/* lowlevel functions, do not call! */
+int s_mp_add(mp_int *a, mp_int *b, mp_int *c);
+int s_mp_sub(mp_int *a, mp_int *b, mp_int *c);
+#define s_mp_mul(a, b, c) s_mp_mul_digs(a, b, c, (a)->used + (b)->used + 1)
+int fast_s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs);
+int s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs);
+int fast_s_mp_mul_high_digs(mp_int *a, mp_int *b, mp_int *c, int digs);
+int s_mp_mul_high_digs(mp_int *a, mp_int *b, mp_int *c, int digs);
+int fast_s_mp_sqr(mp_int *a, mp_int *b);
+int s_mp_sqr(mp_int *a, mp_int *b);
+int mp_karatsuba_mul(mp_int *a, mp_int *b, mp_int *c);
+int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c);
+int mp_karatsuba_sqr(mp_int *a, mp_int *b);
+int mp_toom_sqr(mp_int *a, mp_int *b);
+int fast_mp_invmod(mp_int *a, mp_int *b, mp_int *c);
+int mp_invmod_slow (mp_int * a, mp_int * b, mp_int * c);
+int fast_mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp);
+int mp_exptmod_fast(mp_int *G, mp_int *X, mp_int *P, mp_int *Y, int mode);
+int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int mode);
+void bn_reverse(unsigned char *s, int len);
+
+extern const char *mp_s_rmap;
+
+#ifdef __cplusplus
+ }
+#endif
+
+#endif
+
+
+/* $Source: /cvs/libtom/libtommath/tommath.h,v $ */
+/* $Revision: 1.8 $ */
+/* $Date: 2006/03/31 14:18:44 $ */