diff options
author | Matt Johnston <matt@ucc.asn.au> | 2020-10-15 19:55:15 +0800 |
---|---|---|
committer | Matt Johnston <matt@ucc.asn.au> | 2020-10-15 19:55:15 +0800 |
commit | 0e3e8db5bfca0c579be55e7580a46c593c1384be (patch) | |
tree | 2b1a718f633fb95c1f2d689a591cf9e8642697f3 /libtommath/bn_mp_sqrtmod_prime.c | |
parent | 78e17f6ee9a944430da3e517ee1fe384fd6b275b (diff) | |
parent | 17873e8c922eded2cec86184673a6d110df6403f (diff) |
merge from main
--HG--
branch : fuzz
Diffstat (limited to 'libtommath/bn_mp_sqrtmod_prime.c')
-rw-r--r-- | libtommath/bn_mp_sqrtmod_prime.c | 198 |
1 files changed, 96 insertions, 102 deletions
diff --git a/libtommath/bn_mp_sqrtmod_prime.c b/libtommath/bn_mp_sqrtmod_prime.c index 968729e..a833ed7 100644 --- a/libtommath/bn_mp_sqrtmod_prime.c +++ b/libtommath/bn_mp_sqrtmod_prime.c @@ -1,13 +1,7 @@ -#include <tommath_private.h> +#include "tommath_private.h" #ifdef BN_MP_SQRTMOD_PRIME_C -/* LibTomMath, multiple-precision integer library -- Tom St Denis - * - * LibTomMath is a library that provides multiple-precision - * integer arithmetic as well as number theoretic functionality. - * - * The library is free for all purposes without any express - * guarantee it works. - */ +/* LibTomMath, multiple-precision integer library -- Tom St Denis */ +/* SPDX-License-Identifier: Unlicense */ /* Tonelli-Shanks algorithm * https://en.wikipedia.org/wiki/Tonelli%E2%80%93Shanks_algorithm @@ -15,110 +9,110 @@ * */ -int mp_sqrtmod_prime(mp_int *n, mp_int *prime, mp_int *ret) +mp_err mp_sqrtmod_prime(const mp_int *n, const mp_int *prime, mp_int *ret) { - int res, legendre; - mp_int t1, C, Q, S, Z, M, T, R, two; - mp_digit i; + mp_err err; + int legendre; + mp_int t1, C, Q, S, Z, M, T, R, two; + mp_digit i; - /* first handle the simple cases */ - if (mp_cmp_d(n, 0) == MP_EQ) { - mp_zero(ret); - return MP_OKAY; - } - if (mp_cmp_d(prime, 2) == MP_EQ) return MP_VAL; /* prime must be odd */ - if ((res = mp_jacobi(n, prime, &legendre)) != MP_OKAY) return res; - if (legendre == -1) return MP_VAL; /* quadratic non-residue mod prime */ + /* first handle the simple cases */ + if (mp_cmp_d(n, 0uL) == MP_EQ) { + mp_zero(ret); + return MP_OKAY; + } + if (mp_cmp_d(prime, 2uL) == MP_EQ) return MP_VAL; /* prime must be odd */ + if ((err = mp_kronecker(n, prime, &legendre)) != MP_OKAY) return err; + if (legendre == -1) return MP_VAL; /* quadratic non-residue mod prime */ - if ((res = mp_init_multi(&t1, &C, &Q, &S, &Z, &M, &T, &R, &two, NULL)) != MP_OKAY) { - return res; - } + if ((err = mp_init_multi(&t1, &C, &Q, &S, &Z, &M, &T, &R, &two, NULL)) != MP_OKAY) { + return err; + } - /* SPECIAL CASE: if prime mod 4 == 3 - * compute directly: res = n^(prime+1)/4 mod prime - * Handbook of Applied Cryptography algorithm 3.36 - */ - if ((res = mp_mod_d(prime, 4, &i)) != MP_OKAY) goto cleanup; - if (i == 3) { - if ((res = mp_add_d(prime, 1, &t1)) != MP_OKAY) goto cleanup; - if ((res = mp_div_2(&t1, &t1)) != MP_OKAY) goto cleanup; - if ((res = mp_div_2(&t1, &t1)) != MP_OKAY) goto cleanup; - if ((res = mp_exptmod(n, &t1, prime, ret)) != MP_OKAY) goto cleanup; - res = MP_OKAY; - goto cleanup; - } + /* SPECIAL CASE: if prime mod 4 == 3 + * compute directly: err = n^(prime+1)/4 mod prime + * Handbook of Applied Cryptography algorithm 3.36 + */ + if ((err = mp_mod_d(prime, 4uL, &i)) != MP_OKAY) goto cleanup; + if (i == 3u) { + if ((err = mp_add_d(prime, 1uL, &t1)) != MP_OKAY) goto cleanup; + if ((err = mp_div_2(&t1, &t1)) != MP_OKAY) goto cleanup; + if ((err = mp_div_2(&t1, &t1)) != MP_OKAY) goto cleanup; + if ((err = mp_exptmod(n, &t1, prime, ret)) != MP_OKAY) goto cleanup; + err = MP_OKAY; + goto cleanup; + } - /* NOW: Tonelli-Shanks algorithm */ + /* NOW: Tonelli-Shanks algorithm */ - /* factor out powers of 2 from prime-1, defining Q and S as: prime-1 = Q*2^S */ - if ((res = mp_copy(prime, &Q)) != MP_OKAY) goto cleanup; - if ((res = mp_sub_d(&Q, 1, &Q)) != MP_OKAY) goto cleanup; - /* Q = prime - 1 */ - mp_zero(&S); - /* S = 0 */ - while (mp_iseven(&Q) != MP_NO) { - if ((res = mp_div_2(&Q, &Q)) != MP_OKAY) goto cleanup; - /* Q = Q / 2 */ - if ((res = mp_add_d(&S, 1, &S)) != MP_OKAY) goto cleanup; - /* S = S + 1 */ - } + /* factor out powers of 2 from prime-1, defining Q and S as: prime-1 = Q*2^S */ + if ((err = mp_copy(prime, &Q)) != MP_OKAY) goto cleanup; + if ((err = mp_sub_d(&Q, 1uL, &Q)) != MP_OKAY) goto cleanup; + /* Q = prime - 1 */ + mp_zero(&S); + /* S = 0 */ + while (MP_IS_EVEN(&Q)) { + if ((err = mp_div_2(&Q, &Q)) != MP_OKAY) goto cleanup; + /* Q = Q / 2 */ + if ((err = mp_add_d(&S, 1uL, &S)) != MP_OKAY) goto cleanup; + /* S = S + 1 */ + } - /* find a Z such that the Legendre symbol (Z|prime) == -1 */ - if ((res = mp_set_int(&Z, 2)) != MP_OKAY) goto cleanup; - /* Z = 2 */ - while(1) { - if ((res = mp_jacobi(&Z, prime, &legendre)) != MP_OKAY) goto cleanup; - if (legendre == -1) break; - if ((res = mp_add_d(&Z, 1, &Z)) != MP_OKAY) goto cleanup; - /* Z = Z + 1 */ - } + /* find a Z such that the Legendre symbol (Z|prime) == -1 */ + mp_set_u32(&Z, 2u); + /* Z = 2 */ + for (;;) { + if ((err = mp_kronecker(&Z, prime, &legendre)) != MP_OKAY) goto cleanup; + if (legendre == -1) break; + if ((err = mp_add_d(&Z, 1uL, &Z)) != MP_OKAY) goto cleanup; + /* Z = Z + 1 */ + } - if ((res = mp_exptmod(&Z, &Q, prime, &C)) != MP_OKAY) goto cleanup; - /* C = Z ^ Q mod prime */ - if ((res = mp_add_d(&Q, 1, &t1)) != MP_OKAY) goto cleanup; - if ((res = mp_div_2(&t1, &t1)) != MP_OKAY) goto cleanup; - /* t1 = (Q + 1) / 2 */ - if ((res = mp_exptmod(n, &t1, prime, &R)) != MP_OKAY) goto cleanup; - /* R = n ^ ((Q + 1) / 2) mod prime */ - if ((res = mp_exptmod(n, &Q, prime, &T)) != MP_OKAY) goto cleanup; - /* T = n ^ Q mod prime */ - if ((res = mp_copy(&S, &M)) != MP_OKAY) goto cleanup; - /* M = S */ - if ((res = mp_set_int(&two, 2)) != MP_OKAY) goto cleanup; + if ((err = mp_exptmod(&Z, &Q, prime, &C)) != MP_OKAY) goto cleanup; + /* C = Z ^ Q mod prime */ + if ((err = mp_add_d(&Q, 1uL, &t1)) != MP_OKAY) goto cleanup; + if ((err = mp_div_2(&t1, &t1)) != MP_OKAY) goto cleanup; + /* t1 = (Q + 1) / 2 */ + if ((err = mp_exptmod(n, &t1, prime, &R)) != MP_OKAY) goto cleanup; + /* R = n ^ ((Q + 1) / 2) mod prime */ + if ((err = mp_exptmod(n, &Q, prime, &T)) != MP_OKAY) goto cleanup; + /* T = n ^ Q mod prime */ + if ((err = mp_copy(&S, &M)) != MP_OKAY) goto cleanup; + /* M = S */ + mp_set_u32(&two, 2u); - res = MP_VAL; - while (1) { - if ((res = mp_copy(&T, &t1)) != MP_OKAY) goto cleanup; - i = 0; - while (1) { - if (mp_cmp_d(&t1, 1) == MP_EQ) break; - if ((res = mp_exptmod(&t1, &two, prime, &t1)) != MP_OKAY) goto cleanup; - i++; - } - if (i == 0) { - if ((res = mp_copy(&R, ret)) != MP_OKAY) goto cleanup; - res = MP_OKAY; - goto cleanup; - } - if ((res = mp_sub_d(&M, i, &t1)) != MP_OKAY) goto cleanup; - if ((res = mp_sub_d(&t1, 1, &t1)) != MP_OKAY) goto cleanup; - if ((res = mp_exptmod(&two, &t1, prime, &t1)) != MP_OKAY) goto cleanup; - /* t1 = 2 ^ (M - i - 1) */ - if ((res = mp_exptmod(&C, &t1, prime, &t1)) != MP_OKAY) goto cleanup; - /* t1 = C ^ (2 ^ (M - i - 1)) mod prime */ - if ((res = mp_sqrmod(&t1, prime, &C)) != MP_OKAY) goto cleanup; - /* C = (t1 * t1) mod prime */ - if ((res = mp_mulmod(&R, &t1, prime, &R)) != MP_OKAY) goto cleanup; - /* R = (R * t1) mod prime */ - if ((res = mp_mulmod(&T, &C, prime, &T)) != MP_OKAY) goto cleanup; - /* T = (T * C) mod prime */ - mp_set(&M, i); - /* M = i */ - } + for (;;) { + if ((err = mp_copy(&T, &t1)) != MP_OKAY) goto cleanup; + i = 0; + for (;;) { + if (mp_cmp_d(&t1, 1uL) == MP_EQ) break; + if ((err = mp_exptmod(&t1, &two, prime, &t1)) != MP_OKAY) goto cleanup; + i++; + } + if (i == 0u) { + if ((err = mp_copy(&R, ret)) != MP_OKAY) goto cleanup; + err = MP_OKAY; + goto cleanup; + } + if ((err = mp_sub_d(&M, i, &t1)) != MP_OKAY) goto cleanup; + if ((err = mp_sub_d(&t1, 1uL, &t1)) != MP_OKAY) goto cleanup; + if ((err = mp_exptmod(&two, &t1, prime, &t1)) != MP_OKAY) goto cleanup; + /* t1 = 2 ^ (M - i - 1) */ + if ((err = mp_exptmod(&C, &t1, prime, &t1)) != MP_OKAY) goto cleanup; + /* t1 = C ^ (2 ^ (M - i - 1)) mod prime */ + if ((err = mp_sqrmod(&t1, prime, &C)) != MP_OKAY) goto cleanup; + /* C = (t1 * t1) mod prime */ + if ((err = mp_mulmod(&R, &t1, prime, &R)) != MP_OKAY) goto cleanup; + /* R = (R * t1) mod prime */ + if ((err = mp_mulmod(&T, &C, prime, &T)) != MP_OKAY) goto cleanup; + /* T = (T * C) mod prime */ + mp_set(&M, i); + /* M = i */ + } cleanup: - mp_clear_multi(&t1, &C, &Q, &S, &Z, &M, &T, &R, &two, NULL); - return res; + mp_clear_multi(&t1, &C, &Q, &S, &Z, &M, &T, &R, &two, NULL); + return err; } #endif |