diff options
author | Matt Johnston <matt@ucc.asn.au> | 2006-06-10 16:39:40 +0000 |
---|---|---|
committer | Matt Johnston <matt@ucc.asn.au> | 2006-06-10 16:39:40 +0000 |
commit | c9d3c0bc90f21886e0b78595c53e748256e299bf (patch) | |
tree | 0bb2d3bf2f98dae918f07727f55a36d0a637b9f5 /libtommath/bn_mp_prime_is_prime.c | |
parent | 94d86427ff20ed544e299d3a2de5ecc2cc04c191 (diff) | |
parent | 3b0e6a29698c8580b9556332e678e5301e697959 (diff) |
merge of 332f709a4cb39cde4cedab7c3be89e05f3023067
and ca4ca78b82c5d430c69ce01bf794e8886ce81431
--HG--
extra : convert_revision : 74020525425a1de06739c6c3bed9ef35e4ad867e
Diffstat (limited to 'libtommath/bn_mp_prime_is_prime.c')
-rw-r--r-- | libtommath/bn_mp_prime_is_prime.c | 79 |
1 files changed, 79 insertions, 0 deletions
diff --git a/libtommath/bn_mp_prime_is_prime.c b/libtommath/bn_mp_prime_is_prime.c new file mode 100644 index 0000000..188053a --- /dev/null +++ b/libtommath/bn_mp_prime_is_prime.c @@ -0,0 +1,79 @@ +#include <tommath.h> +#ifdef BN_MP_PRIME_IS_PRIME_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org + */ + +/* performs a variable number of rounds of Miller-Rabin + * + * Probability of error after t rounds is no more than + + * + * Sets result to 1 if probably prime, 0 otherwise + */ +int mp_prime_is_prime (mp_int * a, int t, int *result) +{ + mp_int b; + int ix, err, res; + + /* default to no */ + *result = MP_NO; + + /* valid value of t? */ + if (t <= 0 || t > PRIME_SIZE) { + return MP_VAL; + } + + /* is the input equal to one of the primes in the table? */ + for (ix = 0; ix < PRIME_SIZE; ix++) { + if (mp_cmp_d(a, ltm_prime_tab[ix]) == MP_EQ) { + *result = 1; + return MP_OKAY; + } + } + + /* first perform trial division */ + if ((err = mp_prime_is_divisible (a, &res)) != MP_OKAY) { + return err; + } + + /* return if it was trivially divisible */ + if (res == MP_YES) { + return MP_OKAY; + } + + /* now perform the miller-rabin rounds */ + if ((err = mp_init (&b)) != MP_OKAY) { + return err; + } + + for (ix = 0; ix < t; ix++) { + /* set the prime */ + mp_set (&b, ltm_prime_tab[ix]); + + if ((err = mp_prime_miller_rabin (a, &b, &res)) != MP_OKAY) { + goto LBL_B; + } + + if (res == MP_NO) { + goto LBL_B; + } + } + + /* passed the test */ + *result = MP_YES; +LBL_B:mp_clear (&b); + return err; +} +#endif |